preliminary release

Alphabill Yellowpaper

Ahto Buldas, Mart Saarepera, Risto Laanoja, Ahto Truu

Specification
Version TestNet V1 (main/58345947)

November 29, 2024
© Guardtime, 2024

preliminary release

November 29, 2024 2/140

preliminary release

Contents
1 General Description o e e e e e e 10
1.1 Purpose 10
1.2 Alphabill Architecture 10
2 Framework Data Structures 12
2.1 Parameters, Types, Constants 12
211 Parameters. 12
2.1.2 TYpeso 12
213 Constants 13
2.2 Unitldentifiers 13
2.3 ShardingSchemes 13
2.4 Networks 13
2.5 System Type and System Type Descriptor 14
2.5.1 System Type Descriptor 14
252 Standard System Types 14
2.5.3 Partition Description Record L Lo, 14
2.6 UnitType ldentifiers 15
2.7 Transaction Type Identifiers 15
2.8 TransactionOrdersand Records 15
2.9 Certificates L 16
2.9.1 Unit Tree Certificate 17
2.9.1.1 Creation: CreateUnitTreeCert 17
2.9.1.2 Computation: CompUnitTreeCert 17
2.9.2 State Tree Certificate oL, 18
2.9.2.1 Creation: CreateStateTreeCert 18
2.9.2.2 Computation: CompStateTreeCert 18
2.9.3 Shard Tree Certificate L. 19
2.9.3.1 Creation: CreateShardTreeCert 19
2.9.3.2 Computation: CompShardTreeCert 19
2.9.4 Unicity Tree Certificate 20
2.9.4.1 Creation: CreateUnicityTreeCert 20
2.9.4.2 Computation: CompUnicityTreeCert 20
295 UnicitySeal 21
2.9.6 Unicity Certificate oo 21
2.9.6.1 \Verication: VerifyUnicityCert 21
210 Proofs e 22
2.10.1 UnitState Proof 22
2.10.1.1 Creation: CreateUnitProof 22
2.10.1.2 Verification: VerifyUnitProof 23
2.10.2 Transaction Execution Proof 24
2.10.2.1 Creation: CreateTxProof 24
2.10.2.2 Verification: VerifyTxProof 24
2.10.2.3 Verify Inclusion: Verifylnc 25

November 29, 2024 3/140

preliminary release

3 RootPartition e e e e e 26
3.1 Data Structures of the Root Partition 26
3.1.1 ShardInputRecord 26
3.1.2 Statistical Record 26
313 FeeRecord 27
3.1.4 TechnicalRecord, 27
315 ShardInfo 27
316 ShardTree e 28
3.1.6.1 Shard Tree Creation: CreateShardTree 28

3.2 Unicity Tree e 28
3.2.1 Creation: CreateUnicityTree 28

3.3 State of the Root Partition 29
3.4 Messages of the Root Partition 29
3.4.1 Certification Request oL, 29
3.4.2 Certification Response L. 30

3.5 Functional Description of the Root Partition 30
4 BasePartitionType i i i e e e 33
41 Parameters e e 33
4.2 Shard e 34
421 StateofaShard L 34
422 StateTree e 34
4221 NodeoftheStateTree 34

4.2.2.2 Invariantsofthe State Tree 35

4.2.2.3 Unit Manipulation Functions 35

4.3 TransactionFees e 35
4.3.1 Fee CreditRecords 36
4.3.2 Fee Credit Manipulation Functions 36

4.4 Valid TransactionOrders 36
4.41 Validation Helper Predicates 37

4.5 ExecutionRound 37
4.5.1 Round Initialization: RInit 37
452 Executing Transactions 38
4.5.3 Round Completion: RCompl 38

46 UnitLedger e 38
4.7 Blocks e e 40
471 BlockofaShard 40
472 GenesisBlockofaShard 41
4.7.3 Block Creation: CreateBlock 441
4.7.4 Block Verification: VerifyBlock o0, 42
475 BlockHash:BLock HASH 42
476 BlockSize 43

5 Money PartitionType o i i i e e e 44
5.1 Motivation and General Description L. 44
5.1.1 PureBillMoney Schemes 44
5.1.2 Extended Bill Money Scheme 44
513 DustCollection. 44

November 29, 2024 4/140

preliminary release

51.4 Moneylnvariants o 45

5.2 Specification of the Money Partiton 46
5.2.1 Parameters, Types, Constants, Functions 46
522 TransferaBill 47
523 SplitaBill 48
524 LockaBill 49
525 UnlockaBill 50
52,6 DustCollection. 50
5.2.6.1 Transferto Dust Collector 51

5.2.6.2 Swap with DustCollector 51

5.2.7 FeeCreditManagement. 52
52.71 TransfertoFeeCredit 53

5272 AddFeeCredit, . 54

52.73 CloseFeeCredit 55

52.74 ReclaimFeeCredit 56

52.75 LockaFeeCreditRecord. 57

5.2.7.6 Unlock a Fee CreditRecord 58

5.2.8 Round initialization and completion 59
5.2.8.1 Round Initialization: RInitmoney - - - - 59

5.2.8.2 Round Completion: RCompl,gney - -« -« o v oo o 1L 59

6 User-Defined Token PartitionType 60
6.1 Motivation and General Description L. 60
6.2 Specification. 60
6.2.1 General Parameters 60
6.2.1.1 Notationo 62

6.2.2 Define a Fungible TokenType 62
6.2.3 Define a Non-Fungible Token Type 63
6.2.4 Minta Fungible Token oo 64
6.2.5 Minta Non-Fungible Token 65
6.2.6 Transfera Fungible Token 66
6.2.7 Transfer a Non-Fungible Token 67
6.28 LockaToken. 68
6.29 UnlockaToken, 68
6.2.10 SplitaFungible Token 69
6.2.11 Join Fungible Tokens 70
6.2.11.1 BurningStep 70

6.2.11.2 JoiningStep Lo 71

6.2.12 Update a Non-Fungible Token 73
6.2.13 FeeCreditHandling 73
6.2.14 Round initialization and completion 74
6.2.14.1 Round Initialization: Rlnitken - - - . .« oL 74

6.2.14.2 Round Completion: RComplgen - - - - - -« o 74

6.3 PermissionedMode 74
6.3.1 SetFeeCredit 74
6.3.2 Delete FeeCredit 75

7 Alphabill Distributed Machine 77

November 29, 2024 5/140

preliminary release

7.1 Background 77
7.1.1 Definitions 77
712 SCOPE . . o o e 77
7.1.3 Repeating Notation 78

7.2 PartitionsandShardso 78
721 Timing 78
7.2.2 ConfiguratonandState 79
7.2.3 Subcomponents 82

7231 InputHandling 82
7.23.2 BlockProposal 83
7.2.3.3 \Validation and Execution 83
7.2.3.4 Processing an Unicity Certificate and Finalizing a Block . 86
7.2.3.5 Processing a Block Proposal 87
7.2.3.6 Ledger Replication 89
7.24 Recovery Procedure 89
7.2.5 Protocols —Shard Validators 91
7.2.5.1 Protocol TransactionMsg — Transaction Order Delivery . . 91
7.2.5.2 Protocol CR — Block Certification Request 91
7.2.5.3 Protocol BlockCertificationResponse (CReS) 93
7.2.5.4 Protocol Subscription — subscribing to CReS messages . 93
7.2.5.5 Protocol InputForwardMsg — Input Forwarding 93
7.2.5.6 Protocol BlockProposalMsg — Block Proposal 93
7.2.5.7 Protocol LedgerReplication — Ledger Replication 93

7.3 Root Partition 94
7.3 8Summary e 94
7.32 Timing 94
7383 State 95
7.3.4 Analysis 96

7341 Safety 96

7342 Liveness 96

7.3.4.3 DataAvailability 0oL 96

7.3.5 Monolithic Implementation 97
7.3.5.1 Certification Request Processing 97

7.3.5.2 Unicity Certificate Generation 98

7.3.6 Distributed Implementation 99
7.3.6.1 Summary of Execution 99

Peer Node Selection 100

CR\Validation 100

Shard Quorum Check 100

IR Change Request Validation 102

Proposal Generation, 103

Proposal Validation 103

State Signingo L 103

UC Generation, 103

7.3.6.2 Proposal 103

State Synchronization oo oo 104

7.3.6.3 Atomic Broadcast Primitive 104

Round Pipeline 105

November 29, 2024 6/140

preliminary release

Pacemaker 105

Leader Election L. 105

7.4 Dynamic System 106
7.4.1 ConfigurationChanges 106
7.4.2 Root Partition EpochChange 106
743 ShardEpochChange 107
7.4.4 Controlling Shard Epochs 108
7.45 \Validatorslifecycle 108
7.4.51 Shard Validator, joining 108

7452 ShardNode,leaving 109

7.4.5.3 Shard Node, ambiguousrecords 110

7.4.5.4 Root Partition Node, joining. 110

7.4.5.5 Root Partition Node, leaving 111

7.4.6 Dynamic Data Structures L Lo 111
7.4.61 Versioning 111

74.6.2 Evolving 111

7.4.6.3 Monolithic, Static Root Partiton 112

7.4.6.4 Monolithic, Dynamic Root Partition 112

7.4.6.5 Distributed, Static Root Partition 114

7.4.6.6 Distributed, Dynamic Root Partiton 114

7.4.6.7 Signature Aggregation 115

7.5 Root Partition Data Structures (illustrative) 115
Orchestration i i e et e e e 117
8.1 Introduction 117
8.1.1 Orchestration of the Dynamic Distributed Machine 117

8.2 DataFlow 118
8.2.1 Orchestration Partition. 118
8.2.2 Configuration Agent 118
8.2.2.1 How a Validator joins a Partition 119

8.2.3 Permissioned Partitions o oL oL 119
8.2.4 Root Partition 119

8.3 Orchestration Mechanisms L oL, 120
8.3.1 ProofofAuthority 120
8.3.2 ProofofStake 120
8.3.3 Tokenomics Toolbox 121

8.4 Orchestration Processes 121
8.4.1 \Validator Assignment Lo, 121
8.4.2 Partition Lifecycle Management oo, 122
8.4.3 ShardManagement oL, 123
8.4.4 Incentive Payouts L. 123
8.4.5 Gas Rate Multiplier 124
8.4.6 Software and Version management. 124
8.4.7 On-chainGovernance 124

8.5 Proof of Authority Orchestration Partition Type 124
8.5.1 Summary. 124
8.5.2 Motivation and General Description 124
8.5.3 Specification of the Orchestration Partition 125

November 29, 2024 717140

preliminary release

8.5.3.1 Parameters, Types, Constants, Functions 125

8532 Transactions, 126

Add a Validator Assignment Record 126

A Bitstrings, Orderings,andCodes 128
A1 Bitstringsand Orderings 128
A2 Prefix-Free Codes 128

B Encodings @ i i e e e e e e e e 129
B.1 CBOR e 129
B.2 Bit-strings 129
B.3 Time e e e 129
B.4 Identifiers 130
B.5 Cryptographic Algorithms 130

C HashTrees @ i i i i it it e e e e e e e e e e e e e e e e e 131
C.1 PlainHashTrees e 131
C.1.1 Funclion PLAIN TREE ROOT v v v v i i e e e it e e e 131

C.1.2 Funclion PLAN_TREE CHAIN+t i v i ittt e e 131

C.1.3 Function PLAN_TREE_OUTPUT« v v v v v e et e 132

C.1.4 InclusionProofs 132

C.2 IndexedHashTrees e 133
C.2.1 Funclion INDEX_TREE_ROOT « v v v v v vt e e it e e e 133

C.2.2 Funclion INDEX TREE_CHAIN « v v v v v v e e et e e e 134

C.2.3 Function INDEX_TREE_OUTPUT + v v v v v v e e et e e e 134

C.2.4 Inclusion and ExclusionProofs 135

D StateFile e e e e e e e 136
D1 Header. e 136
D.2 Node Record e 136
D.3 Checksum 137
D.4 Writing (Serialization) Algorithm oo 137
D.5 Reading (Deserialization) Algorithm 137

3 o (= 139

November 29, 2024 8/140

preliminary release

Notation

Typographic Conventions

Names of types are set in “blackboard bold”: A, B, ...

Common Constructions

1
a€A
A[B]

alb] = L

f:B—o A
A*

Ak

Ask

Azk

alil

lal
allb

A
\%

nothing; missing or uninitialized value, or the indication of error

variable or constant a is of type A

dictionaries with elements of type A indexed by indices of type B (or partial
functions from B to A)

dictionary a has no element with index b (or partial function a is not defined
on argument value b)

f is a total function from B to A

finite arrays of elements of type A, including the empty array

arrays of exactly k elements of type A

arrays of at most k elements of type A

arrays of at least k elements of type A

if a is of type A*, then qa[i] denotes the i-th element of a; numbering of
elements starts from 1

if a is of type A*, then |a| denotes the number of elements of type A in q;
ae Al

concatenation of lists or bitstrings a and b

logical AND operation

logical OR operation

Concrete Types

Ng

{0, 1}
OCT”
CHR*

k-bit unsigned integers (0...2% - 1)

finite bitstrings, including the zero-length string denoted by ||

finite octet strings (sequences of 8-bit bytes)

finite text strings (sequences of Unicode code points represented in the
UTF-8 encoding)

November 29, 2024 9/140

preliminary release

1 General Description

1.1 Purpose

Alphabill Framework provides interoperability of all block-chained transactions systems of
certain general type.

Transaction systems that fit to Alphabill Framework have:

¢ units «, each unit having an identifier ¢ and unit data D;
¢ transactions that create and delete units or change the data of the units.
The data of most types of units includes the owner predicate ¢ that is used to validate the

next transaction manipulating that unit. Replacing the owner predicate of a unit effectively
transfers its ownership.

Alphabill Framework:
¢ defines a language for describing the functionality of transaction systems: state and
transactions (syntax and semantics),

e provides libraries and toolkits for developing block-chained transaction systems in
Alphabill Framework,

e based on descriptions of transaction systems, registers and assigns identifiers 3 to
partitions implementing them,

e provides unicity certificate service for the shards of registered partitions: unique state
root hash h; and transaction block root hash /s and summary value Vj for every pair
(n,8), where n is the sequence number of a (successful) round of the shard.

1.2 Alphabill Architecture

Based on the Alphabill Framework, new Transaction Systems are defined. Transaction
systems are parameterized and instantiated as Partitions.

A Partition may be decomposed into arbitrary number of Shards in order to meet perfor-
mance needs (Fig. 1).

All Shards and Partitions are implemented as a distributed machine in order to meet de-
centralization and availability needs.

The security of Alphabill system is intrinsic to the architecture.

November 29, 2024 10/140

preliminary release

[Root Chain]

ABMoney Partition Atomicity Partition Partition X Partition Y

Figure 1. Alphabill functional model

November 29, 2024 11/140

preliminary release

2 Framework Data Structures

2.1 Parameters, Types, Constants

2.1.1 Parameters

tidlen — unit type identifier length of type Ng (per partition)
uidlen — unit identifier length of type Ng (per partition)

2.1.2 Types

A = Ny — network identifiers

P = N3, — partition identifiers

IT = OCT""" _ unit type identifiers

IU = OCT"®®" — unit identifiers

I = IU x IT = QCcTuden+tden _ axtended identifiers, combining the type and the unit identi-
fiers

L. — predicates (the conditions defining unit ownership, token manipulation rights, etc.)

H — hash value type, output of hash function H of type OCT* — H

UB - unicity trust base type

SP — unit (state) proof type

XP - transaction (execution) proof type

ST = Ng — system type identifiers

T = N4 — transaction type identifiers

AT — abstract type of transaction attributes (formally the union of types of transaction
attributes over all valid transaction types, | J AT, over all T € T)

PT — abstract type of transaction authorization proofs (formally the union of types of
authorization proofs over all valid transaction types, | JPT, over all T € T)

MC - client-side transaction metadata type

MS - server-side transaction metadata type

TO - abstract transaction order type, including the abstract transaction attributes, client-
side metadata, and the abstract authorization proofs

TR —abstract transaction record type, including the abstract transaction attributes, client-
side metadata, the abstract authorization proofs, and server-side metadata

SD — system description type

PD - partition description type

IR —shard input record type

US - unicity seal type

SH - sharding scheme type

November 29, 2024 12/140

preliminary release

CS - state tree certificate type
CU - unit tree certificate type

2.1.3 Constants

0; - zero identifier of type I
Og —zero-hash of type H

2.2 Unit Identifiers

The structure of extended identifiers in a partition’s state tree is defined by two parameters:

tidlen — the type identifier length (in bytes)
uidlen —the unit identifier length (in bytes)

The extended identifiers are the concatenation of the unit identifier part and the type iden-
tifier part, with the unit identifier in the uidlen first bytes and the type identifier in the tidlen
last bytes of the extended identifier.

We also define the following convenience functions:

ExtrUnit : T — TU that extracts the unit identifier part from an extended identifier
ExtrType : I — IT that extracts the type identifier part from an extended identifier
NodelD : IT xIU — I that combines the type and unit identifiers into an extended identifier

For ordering, identifiers are compared lexicographically.

2.3 Sharding Schemes

Sharding scheme SH of type SH is an irreducible prefix-free code (Appendix A).
If SH = {[l}, then there is a single shard.

In the description of a sharding scheme, the shard identifiers are listed in the topological
order oy < 0, < ... < 0, (Appendix A).

Every sharding scheme SH induces a sharding function fss: I — SH. The shard fss(¢)
responsible for handling the unit ¢ is the shard whose identifier o; is a prefix of «. With SH
an irreducible prefix-free code, there is exactly one such o;.

2.4 Networks

In practice, there will be several instances of Alphabill networks, each consisting of its own
Root Chain and its own set of partitions. Each such network will have an identifier a:

e « = 1 is the public mainnet instance;

e o = 2 is the public testnet instance;

a = 3 is a local development instance;

the identifiers 4 .. .8 are reserved for future extensions;

any additional instances of Alphabill networks should use identifiers starting from 9.

November 29, 2024 13/140

preliminary release

To reduce the risk of confusion, it is recommended for each major deployment to use a
unique identifier. However, there is no central registry to enforce this constraint.

It is strongly recommended to avoid using the identifier 0, so that an uninitialized identifier
(which defaults to 0 in many programming languages) would not match any actual network.

2.5 System Type and System Type Descriptor

Every partition (an instance of a transaction system) registered in the Alphabill Framework
with partition identifier 8 has a system type that is either:

1. a standard type (Money, Atomicity, etc.), or
2. a defined type that is described as a data structure of type SD.

2.5.1 System Type Descriptor
A system type descriptor is a tuple SO = (U, D, V, V,, Vs, Fs,y) € SD, where:

U e (OCT"e")* is the list of known unit type identifiers;
D is the abstract unit data type (union of unit data types for all known unit types);

V is the summary value type;

Vo € V is the summary value of the data related to the unit with zero-identifier Oy;

Vs: D — Vis the data summary function;

Fs: (VU{L}) XV XV — Vis the node summary function;

v: VXV — B is the summary check predicate.

2.5.2 Standard System Types

Money system (st = 1) — Defined in the Money Partition Type specification

User token system (st = 2) — Defined in the User Token Partition Type specification
Atomicity system (st = 3) — Defined in the Atomicity Partition Type specification

Orchestration system (st = 4) — Defined in the Orchestration Partition specification

2.5.3 Partition Description Record

A partition description record is a tuple PD = (a, S, st, SD, tidlen, uidlen, SH, V., trc, Fc) €
PD, where:

a € A is the network identifier;

[€ P is the partition identifier;

st € ST is the system type identifier (for standard types, st > 0);

SD e SD U {1} is the system type descriptor (exists if st = 0);

tidlen € Ny is the unit type identifier length;

uidlen € Ny is the unit identifier length;
SH e SH is the sharding scheme;

November 29, 2024 14/140

preliminary release

e V e V[SH] lists the summary trust base values for each shard;

e ;¢ € lis the identifier of the bill in the money partition that represents the fee credits
users have in this transaction system;

e F-: TO XS — Ng, is the transaction cost function.
Instead of PD.SD.x (where x is any field of SD), we use the shorthand notation D.x. For

standard type partitions, the field PD.SD does not exist. In this case, the notation PD.x
will mean the constant value of x of the standard type st.

2.6 Unit Type ldentifiers

Each transaction system has a defined list of unit types that it supports. Each unit type has
an identifier of type IT = Nygen. The identifier values 16...31 are reserved for common unit
types supported across many transaction systems (such as fee credit records, Sec. 4.3.1)
and should not be assigned to unit types specific to just one transaction system.

2.7 Transaction Type ldentifiers

Each transaction system has a defined list of transaction types that it supports. Each trans-
action type has an identifier of type T = Ny¢. The identifier values 16...31 are reserved for
common transaction types supported across many transaction systems (such as handling
fee credits) and should not be assigned to transaction types specific to just one transaction
system.

2.8 Transaction Orders and Records
A transaction order is a tuple T = {(a,f,t,7,A, Mc, P, s¢), with M¢ = (T, fm, s, p), Where

a € A is the network identifier;

[€ P is the partition identifier;

¢ € I'is the unit identifier;

7 € T is the transaction type identifier;

e A € AT, are the transaction attributes (a tuple whose contents are defined by the
transaction type);

M. € MC is the client metadata for the transaction, where

— T, € Ng4 is the transaction timeout;

— fm € Ng, is the maximum fee the user is willing to pay for the execution of this
transaction;

— 1y € 1U {L} is the optional identifier of the fee credit record,;
— p € OCT=*?* U {L} is the optional reference number;

P € PT, are the transaction authorization proofs (a tuple whose contents are defined
by the transaction type);

sy € OCT" U {1} is the optional fee authorization proof.

November 29, 2024 15/140

preliminary release

Each transaction order T has an associated set of target units targets(7T"). In most cases
targets(T) = {T'..}, but some transaction orders target multiple units. Such cases are high-
lighted in the sections defining those transaction types.

A ftransaction record is a transaction order with server-side metadata added to it. More
formally, it is a tuple 77 = (e, 8,1, 7, A, Mc, P, sy, Ms), with Mg = (f,, 7, R), where

o o,B,1, T, A, Mc, P, s are as defined above;
e Mg € MS is the service metadata for the transaction, where

— f. € Ng4 is the actual fee charged for the processing of this transaction;

— r € B indicates whether the transaction was executed successfully; currently
only successful transactions (with » = 1) are recorded in blocks; however, in the
future also unsuccessful transactions (with » = 0) may be recorded and charged
for;

— R € RT; are the processing result details (a tuple whose contents are defined
by the transaction type).

2.9 Certificates

Certificates are compact proofs of inclusion (or sometimes uniqueness, or exclusion) of
some data item in an authenticated data structure. Certificates may be chained. Combining
certificates, it is possible to put together proofs (Sec. 2.10) proving e.g. execution of a
transaction, or existence of a unit state.

T
T foees uc
unit 1 '
I T _ H T t C' I
uc : FTTToC T - H“, I
: h{|v E E ve : I E
E | : h hp : E cun :
! Cstate ' , h 00— ! ! '
I, e b ;
! 0 E i_ J \ (shard E
: Cunit : N : :
e 5 T | i
Figure 3. Chain of cer- : IR ' I
T’ D .) ! .
tificates forming a Transac- e e
Figure 2. Chain of certificates 1O" Proof Figure 4. Unicity Certificate is
forming a Unit Proof a chain of certificates and a

certified input data record IR

See Fig. 2, 3 and the exploded view of Unicity Certificate, Fig. 4. Transaction record 7’ and
targeted unit’s (identified by () state D—immediately after executing the transaction—are

November 29, 2024 16/140

preliminary release

certified by a chain of certificates. The final link, Unicity Seal (C"), is validated based on the
global root of trust: Unicity Trust Base 7.

2.9.1 Unit Tree Certificate

Unit Tree Certificate C'™ consists of the following components:

1. An initial tuple (¢, s)
2. Alist of tuples (b1, y1), ..., (bu, Vi)

Here s € H is the hash of the unit’s state, computed as s = H(D), and t € H is the hash of
the transaction that brought the unit to this state, computed as r = H,(T"), where T’ is the
transaction record.

The y; € H are the sibling hash values on the path from the state’s leaf to the root in the
hash tree aggregating the state change log of the unit within one round, and b; € {0, 1}
indicates whether y; is a right- or left-hand sibling.

2.9.1.1 Creation: CreateUnitTreeCert

Input:

1. ¢ — unit identifier to generate the certificate for
2. i —index of the intermediate state within the round to generate the certificate for

3. N —state tree (Sec. 4.2.2)

Output: Unit tree certificate CU"

Computation:
n < |N[t].S]
for j — 1tondo
s; < H(N[t].S ;.D)
vj < Ho(N[t].S j.x, 5)
end for
return ((N[c].S .1, s;), PLAIN_TREE_CHAIN((Y1, ..., Yn), L))

2.9.1.2 Computation: CompUnitTreeCert
Input:

1. x_ — hash value of type H
2. CU" = ((t, 5); (b1, Y1), - . ., (b, ym)) — unit tree certificate of type CU

Output: The unit tree root hash value of type H

Computation:

7z H(Hy(x_,1),5) > H, defined in Sec. 4.6
return pLAN_TREE_OUTPUT({(D1, V1), - -+ » (Bys Yim))3 2) > Sec. C.1.3

November 29, 2024 17/140

preliminary release

2.9.2 State Tree Certificate
State tree certificate CS'® for (1, zy, V) consists of the following components:
1. Aninitial tuple (h, Vi ; hg, V&)
2. A list of tuples (¢1,z1, Vis 1), V), ..., (tns Zms Vins By, V) sUCh that «; # ¢« for every i €

m? m

{1,...,m};if ; =« for some i, then the certificate must be considered invalid

2.9.2.1 Creation: CreateStateTreeCert

Input:
1. « — extended identifier of type I
2. N — state tree
3. t, —root node identifier

4. PD — partition description of type PD

Output: State tree certificate Csta

Computation:
C<0
U1,
while ¢’ ¢ {¢,0;} do
V « PD.Fg(N[!/].D)
if t < then
tr < N[U].tg
C « (U,N[!].hg, V; N[tg].h, N[tr].V)|IC
UV« N[].y
else
1, <« N[!].p
C « (U,N[!].hg, V;N[tr].h, N[t] V)IIC
U« N[!].r
end if
end while
if / = ¢ then
t; < N[U])p; tg < N[U].tg
C «— (N[tz].h,N[tz].V; Nlig].h, N[1g].V)|IC
end if
return C

2.9.2.2 Computation: CompStateTreeCert
Input:

1. ¢ — unit identifier of type I
2. 7o — unit tree root hash of type H
3. Vp —unit summary value of type PD.V (type is not needed for the computation)

4. C° = ((hy, Vishg, VR)s (w2, Vs, VD, (s 2y Vs s Vi) — state tree certifi-
cate of type CS

November 29, 2024 18/140

preliminary release

5. PD — partition description of type PD

Output: A pair (h, V), where h is the state tree root hash of type H and V is the state tree
summary value of type PD.V

Computation:
V « PD.Fs(V(), VL, VR)
h «— H(t,z0, Vi hy, Vi hg, Vi)
fori — 1tomdo
if 1 <; then
V'« PD.Fs(V;,V, V)
h « H(t,z;, V' h, Vi R, VE)
else
V'« PD.Fs(V;, V', V)
h «— H(i,z;, V'; i, Vi h, V)
end if
V<V
end for
return (h,V)

2.9.3 Shard Tree Certificate

Shard Tree Certificate is a tuple C3"a® = (o~ h?,), where:
1. o0 =0,0,...0 is a shard identifier of type {0, 1}*
2. hy,...,h,, —sibling hashes of type H

For the single shard case, the sharding scheme is {||} and the certificate is (||, L).

2.9.3.1 Creation: CreateShardTreeCert
Input:

1. o — shard identifier
2. x —shard tree of type y: SH > H

Output: shard tree certificate CS"¥ = (o3 ¢, . ..)

Computation:

C<0

for i « |o| downto 1 do
C—Cllx(ooy...01.109)

end for

return (o;C)

where o0, ... 0, is the binary representation of o, and o is the binary complement of o;.

For the single shard case, the shard certificate is (|J, L).

2.9.3.2 Computation: CompShardTreeCert
Input:

November 29, 2024 19/140

preliminary release

1. (o h,... ,hlfrl) — shard tree certificate, where o = 010 . .. 0 is @ shard identifier
2. IR — Shard Input Record
3. h; —hash value of type H

Output: Root hash r of type H

Computation:
r«— H(R|| h,)
fori < |o| downto 1 do
if o =0thenr « H(r, k)
if o; = 1thenr « H(h!,r)
end for
return r

For the single shard case, CompShardTreeCert((|l, L), IR, h;) returns H(IR || h;).

2.9.4 Unicity Tree Certificate

Unicity Tree Certificate is a tuple CU" = (8, dhash; (8,, h»), . . ., (B¢, he)), where:
1. B — partition identifier of type P
2. dhash — partition description hash of type H

3. (B2, ho),...,(Be he) —a sequence of partition identifier and sibling hash pairs

2.9.4.1 Creation: CreateUnicityTreeCert
Input:

1. B — partition identifier of type P

2. P — set of partition identifiers of type P

3. PD — partition description of type PD[P]
4. TH — input hashes of type H[#]

Output: unicity tree certificate (8, dhash; (8., 1), ..., (B¢, he))

Computation:
n«|P| > Number of partitions
P « sorted(P) > Sorted list

fori—1...ndo
Xi «— HIH[P;] || HPDIP;])

end for
((B1,), (B2, 2), - - ., (Be, he)) < INDEX_TREE_CHAIN((P1, X1), (P2, X2), - . - (Py, Xn), B)
return (8, HPDIB)); (B2, ha), ..., (B¢, he)) > Drop redundant first hash step

2.9.4.2 Computation: CompUnicityTreeCert
Input:

1. (B,dhash; (8., hy), ..., (B¢ he)) — unicity tree certificate

November 29, 2024 20/140

preliminary release

2. x —input hash (output of the CompShardTreeCert function)

Output: Root hash r of type H

Computation:

L « {(B, H(x,dhash)), (82, h2), ..., (B¢, he)) > Restore the first hash step
return INDEx_TREE_OUTPUT(L; 5) > Sec. C.2.3

2.9.5 Unicity Seal
Unicity Seal is a tuple C" = (a, n,, e,,t,,r_, r; s), where:

a — Network identifier
n, — Root Chain Round number
e, — Root Chain Epoch number

0N~

t. — Round creation time (wall clock value specified and verified by the Root Chain),
with one-second precision. See Appendix B for encoding

5. r_ — Root hash of previous round’s Unicity Tree
6. r — Root hash of the Unicity Tree (denoted as ™ if necessary for clarity)

7. s — Signature, computed by the Root Chain over preceding fields (s =
Signg (n, ey, 1., r_,). The formulation of signature field depends on underlying con-
sensus mechanism and its parameters. Here we assume an opaque data structure
which can be verified based on the Unicity Trust Base, i.e., there is an implementation
of an abstract function Verify,((n,, e, t.,r_, r), s), encapsulated into the implementa-
tion of VerifyUnicitySeal.

VerifyUnicitySeal — unicity seal verification function of type HxUSxUB — B . This function
also verifies, if Unicity Seal’s network identifier matches with the Unicity Trust Base.

2.9.6 Unicity Certificate

Unicity Certificate is a tuple UC = (IR, h,, CS"¥, C"" C"), where:
IR is a shard input record of type IR (Sec. 3.1.1),

h, is the hash (of technical record) of type H,

Cshad js a shard tree certificate,
CY"'is a unicity tree certificate, and

o A~ N~

C" is a unicity seal

Elements of the tuple form an authenticated chain, see function Verication:
VerifyUnicityCert.

2.9.6.1 Verication: VerifyUnicityCert

Verifies if unicity certificate is valid, based on unicity trust base as the root of trust.

Input:

1. UC = (IR, h,,Cs"d_CU" C") — Unicity Certificate

November 29, 2024 21/140

2.

7 — Unicity Trust Base

Output: True or FaLse

Computation:

r « CompShardTreeCert(UC.C3"®9, UC.IR, UC.h,)

r « CompUnicity TreeCert(UC.C"™, r)
return VerifyUnicitySeal(r,C",7) = 1

2.10 Proofs

2.10.1 Unit State Proof

Unit State Proof, also called Unit Proof is a tuple IT"" = (¢, x_, C""™, V,,, CS'¥® UC), where:

1. « — extended identifier of the unit, of type I
2. x_ — previous state hash of type HU {1}
3. CU"' — unit tree certificate (Sec. 2.9.1)

4.
5
6

Vo — data summary of type PD.V

. Cst® _ state tree certificate (Sec. 2.9.2)

. UC — unicity certificate

2.10.1.1 Creation: CreateUnitProof

Input:

S o

¢ — unit identifier to generate proof for

preliminary release

i —index of the intermediate state within the round to generate proof for

N — state tree

1, — root node of the state tree
UC - Unicity Certificate

PD — partition description record

Output: Unit State Proof IT'" of type SP

Computation:
assert 1 <i <|N[(].S]
if i > 1 then
X_ «— N[t].Si-1.x > Existing unit was updated by a transaction
else if N[¢].§ .t = L then
Xx_ « N[t].S.x > Initial state was copied from previous round
else

X_«— 1

end if

CU"t CreateUnitTreeCert(s, i, N)

Cs@ CreateStateTreeCert(s, N, ,, PD)
return (L, X, Cunit’ N[L]V, Cstate, UC)

> Unit was created, no previous state

> Sec. 2.9.1.1
> Sec. 2.9.2.1

November 29, 2024

22/140

2.10.1.2 Verification: VerifyUnitProof
VerifyUnitProof — unit proof verification function of type SP x UB x PD — B
Input:

1. IV = (1, x_, CU", V,y, CS13 U C) — unit proof

2. 7 —trust base

3. PD — partition description of type PD

Output: True or FaLse

Computation:

z « CompUnitTreeCert(x_, CU"")
(h,v) < CompStateTreeCert(t, z, Vy; C3?, PD)
return VerifyUnicityCert(UC,7) A UC.C*"®9 dhash = H(PD)
AN yv,PD.V[fepsn()]) A UCIRh=h N UC.IRv =v

preliminary release

Note that a unit state proof IT can be used to prove and verify several different claims
about a unit. Using the notation that the state tree certificate CS'*® in the unit proof is
((he, Vishg, VR); (i, 20, Vis B, V), oo (s Zs Vi 5y, Vi)Y @nd the unit tree certificate CU™ is

m? m

((t, 8); (b1, Y1), ..., (bu,ym)), We can express the following conditions:

1. At some point during the round n, the unit ¢ had the data D:

VerifyUnitProof(I1, 7,PD) = 1 A
[li=¢ AN TLUC.IRn=n A
[1.C'" s = H(D).

2. At some point during the round n, the unit « had the transaction in the record 7’

applied to it:

VerifyUnitProof(I1, 7,PD) = 1 A
[Mie=t AN TLUC.IRn=n A
ILCY" ¢t = H(T").

3. At some point during the round n, the unit ¢ had the transaction in the record T’
applied to it and this set the unit’s data to D (essentially the conjunction of the two

previous conditions):

VerifyUnitProof(II, 7,PD) = 1 A
IHie=¢t A ILUCIRn=n A
ILCY" ¢t = H(T") A ILC'".s = H(D).

4. The state of the unit ¢ did not change from the beginning of round n; to the end of

November 29, 2024

23/140

preliminary release

round n;,:
VerifyUnitProof(I1;, 7, PD) = 1 A
IIjiu=¢ A IIJ.UCIR.n =n; A
,.C'" b, = I1,.C"" b, = ... = I1,.C" b,, = 0 A
VerifyUnitProof(I1,, 7, PD) = 1 A
IL.u=¢ AN IIL.UCIR.n=n, A
[L.CU" b, = I1,.C"" b, = ... = [L,.C"" b, =1 A
O.x. =Thx. A IL.C"Mr=1.

5. The unit ¢ did not exist at the end of round n:

VerifyUnitProof(II, 7,PD) =1 A ILUC.IRn=n A

(t<Ili A ILhp =0y V ¢>11e A ILhg = 0g) A

(¢ <TLC%®® A TLe < TLCS® .y, v (> TLCS™® . A TLe > IL.CS®®) A
(« <TLC%®® 1, A TLe < ILCS®y, v (> TLCS® ., A I > IL.CSH® 4,) A

(c <TLC%®® A TLe < IL.C®®,, v (> ILC® e, A ILo>ILCS%,,).

2.10.2 Transaction Execution Proof

Transaction Execution Proof (also Transaction Proof) for a transaction record 7" is a tuple
% = (h,, C, UC), where:

1. h, — hash of block header fields
2. C —Dblock tree hash chain

3. UC — unicity certificate

2.10.2.1 Creation: CreateTxProof
Input:

1. B={(B,0,h_,v);T|,...,T;; UC) — block

2. i —index of the transaction to generate proof for
Output: Transaction Execution Proof IT* of type XP

Computation:
assert1 <i<k
h, — HB,o,h_,v)
C < PLAIN_TREE_CHAN((H(TY), ..., H(T})), 1) > Sec. C.1.2
return (h;,,C,UC)

2.10.2.2 Verification: VerifyTxProof
Verify TxProof — transaction proof verification function of type TR x XP x UB X PD — B

Input:

November 29, 2024 247140

preliminary release

1. T’ —transaction record

2. I* = (h,, C, UC) — transaction proof
3. 7 —trust base

4. PD — partition description of type PD

Output: True or FaLse

Computation:
return Verifylnc((T’, 11%), 7, PD) A (T’' .Ms.r = 1)

2.10.2.3 Verify Inclusion: Verifylnc
Verifies if a transaction is included into a block.
Input:

1. T’ —transaction record

2. I1™ = (h;,, C, UC) — transaction proof

3. 7 —trust base

4. PD — partition description of type PD
Output: True or FaLse

Computation:
h « pLAN_TREe_ouTPuT(C, H(T")) > Sec. C.1.3
h <« H(h,, UCIR.W,UC.IR.h, h)
return VerifyUnicityCert(UC,7) A UC.C'".dhash = H(PD) A UC.IR.hg =h

November 29, 2024 25/140

preliminary release

3 Root Partition

3.1 Data Structures of the Root Partition

3.1.1 Shard Input Record

Shard input record (IR) of a shard of a partition (of type IR) is a tuple (n, e, h’, h, v, t, hg, f3),
where:

1. n—shard’s round number of type Ng,

e — shard’s epoch number of type Ng,

h’ — previous round’s root hash of type H

h — current round’s root hash of type H

v —summary value of the current round; type V*, where V* = UppPDI[S].V

t — reference time for transaction validation of type N,

N o o &~ 0D

hg — hash of the block B computed over all fields except certificates, type H; compu-
tation is specified by the function sLock_HAsH()

8. fz—sum of the actual fees over all transaction records in the block, of type Ng,

3.1.2 Statistical Record

Statistical record of type SR is a tuple SR = (n,, f3. £, Cs. f5. {5, {s), where:

1. n, — number of non-empty blocks (recording a state change), of type Ng,4
f — total block fees, of type N,

£ — the sum of all block sizes, of type Ngg4

{5 — the sum of all state sizes, of type Ngg4

f5 — maximum block fee, of type N4

{5 — maximum block size, of type N,

N o o M 0D

{5 — maximum state size, of type Ng,

There is one Statistical Record of current epoch where the values are being updated, re-
flecting the current state since the beginning of the epoch; and one invariant Statistical
Record of the preceding epoch of every shard of every public partition.

November 29, 2024 26/140

preliminary release

3.1.3 Fee Record
Fee Record of type VF is a map VF : V — f, where:

1. V —the set of validator identifiers of the shard, each of type {0, 1}*

2. f —fee amount associated with a validator identifier, of type Ng4

There is one cumulative Fee Record of the validators of the current epoch and one invariant
Fee Record of the validators of the previous epoch of every shard of every public partition.

3.1.4 Technical Record

Technical record of type TE is a tuple TE = (n,, e,, v¢, hgr, hyt), Where:

1. n, — suggested next round number of type Ng,
2. e, — suggested next epoch number of type Ng,4
3. v, —suggested leader identifier of type {0, 1}*

4. he, — hash of statistical records; type H
5

. hy — hash of validator fee records; type H

Technical record is delivered with an Unicity Certificate. When a shard is extending the
Unicity Certificate with a next block production attempt, then it must use the suggested
values provided in Technical Record.

There is one Technical Record for every shard of every partition, providing synchronization
for the next block production attempt.

3.1.5 Shard Info
Shard info of type Sl is a tuple (n,e,h_,SR_, SR, V, V¥ _, VF,v,, UC_), where:

1. n—shard’s round number of type Ng,

e — shard’s epoch number of type Ng,4

h_ — last-certified root hash

SR_ — statistical record of the previous epoch

SR - statistical record of the current epoch, initially (at each epoch) (0,0, 0,0, 0,0, 0)

V — validators of the shard, a set of identifiers, each of type {0, 1}*

N o g &~ Db

VF _ — per validator total, invariant fees of the previous epoch of type Ng,[{0, 1}7],
where V¥ _[v] is the total amount of fees taken by the validator with identifier v during
the previous epoch

8. V¥ — per validator summary fees of the current epoch of type Ne[{0, 1}*], where
VF _[v] is the monotonically increasing total amount of fees taken by the validator
with identifier v during the current epoch

9. v, — leader identifier of type {0, 1}* (it is assumed that v, € V)

10. UC_ - last created unicity certificate

November 29, 2024 277140

preliminary release

3.1.6 Shard Tree

For a partition g, let SHs = PD[B].SH, and ITRT 5 be of type (IR, H)[SH,], i.e. for every
BePand o e SHg, IRT slo] = (IR, hy) (for some IR and k).

If there is no input from a shard to certify then 7R7 (o] = TRT s[o]-, that s, the value from
the previously built Shard Tree is used. If there is no previous value then 7R7 g[o] = Oy.

Shard tree for a partition 8 is a function y;: S—WB — H such that:
1. If o € SHp, then xz(0) = HIRT glo]) = HIRT gl IR ITRT slo].hy).
2. If o € SHE\SHj, then ys(c) = H(xs(c0) II xp(crll1)).

The value yz(ll) is called the root hash of the shard tree.

Shard tree certificate for a shard oo € SHp is a sequence £, ..., h, of sibling hash values

>"'m

of type H, where m = || (the number of bits in o); see Sec. 2.9.3.

3.1.6.1 Shard Tree Creation: CreateShardTree
Input:

1. SH — sharding scheme of type SH
2. IRT — shard-specific data of type (IR, H)[SH]

Output: y — shard tree of type SH > H

Computation: y «— 1, genST(|))

where genST is the following recursive function of type {0, 1}* — H with side effects:
genST(o):

1. if o0 € SH, then store y(0) «— H(IRT [o]) and return y (o).
2. if o € SH\SH, then store y(c) — H(genST(c|0) || genST(c|1)) and return y(o)

For the single shard case, the shard tree is {(||, H(ZR7 [c])}, i.e. it only has a single record
for the root hash (1)) = HIRT [o]).
3.2 Unicity Tree

Unicity Tree is an indexed Merkle tree.

3.2.1 Creation: CreateUnicityTree
Input:
1. P — set of partition identifiers of type P

2. PD — partition description of type PD[P]
3. I'H — input hashes of type H[P]

November 29, 2024 28/140

preliminary release

Output: r — unicity tree root hash of type H

Computation:

n « |P| > Number of partitions
P « sorted(P) > Sorted list
fori—1...ndo

x; «— HIHIP] || HPDIP:])
end for
return INDEx_TREE_ROOT((Py, x1), (P2, X2), ..., (Py, X)) > Sec. C.2.1

3.3 State of the Root Partition

State of the root partition is a tuple (a,n,e,r_,7,P,PD,ST), where:

a — network identifier of type «

n — root partition’s round number of type Ngq4

e — root partition’s epoch number of type Ngg4

r_ — previous root hash of the unicity tree of type H
7 — unicity trust base of type UB

P — set of partition identifiers, with elements of type P
PP — partition descriptions of type PD[P]

87 — shard info of type SI[P, {0, 1}*]

© N o o~ DD~

Epoch number can be interpreted as the version number of some shard’s or Root Partition’s
configuration. It is used by supporting layers like orchestration and consensus. On static
configuration, the epoch is 0.

3.4 Messages of the Root Partition

3.4.1 Certification Request

Certification Request (CR) of a shard of a partition is a message (., 0, v; IR, {3, {s; s),
where:

. a — network identifier of type A

. B — partition identifier of type P

. o —shard identifier of type SH

. v —validator identifier of type {0, 1}*

. TR — shard input record of type IR

. {p — block size in bytes of type Ng,

. {5 — state size in bytes of type Ng,

0o N o o~ WOND =

. s — signature authenticating the message

The block size ¢ is computed as described in Sec. 4.7.6 and the state size ¢ is computed
as described in Sec. 4.2.1.

Certification requests are sent to the root partition by the validators of shards.

November 29, 2024 29/140

preliminary release

3.4.2 Certification Response

Certification Response (CReS) of a shard of a partition is a message («,,0, TE; UC),
where:

a — network identifier of type A
B — partition identifier of type P
o — shard identifier of type SH
TE —technical record of type TE

o~ wbdp

UC — certified unicity certificate

Certification response is sent by the root partition to validators of a shard of a partition as a
response to a certification request message. This is an asynchronous message: response
is not immediate, and there can be multiple subsequent responses.

3.5 Functional Description of the Root Partition

During every round, the root partition receives certification requests from the shards of
partitions g € P.

As every shard o of a partition 8 is implemented by a redundant distributed system with
certain number m = |SI[B,0].V| of validator machines, it is possible that several certi-
fication requests CRs,, with the same CRg,.7R.A’" but different CRg..7R.h are received.
This is solved by a majority voting mechanism requiring that a required majority, at least
m/2] + 1 of the dedicated validators, send CR;,, with an identical value of CRsz,.Z7R.h. It
is possible that not every shard sends its shard input record to the root partition during the
round, and the majority voting may fail (see the Consensus specification for details).

For every incoming certificate request CR = (a,B,0,v;t,IR, (,{s) the following checks
are made (if any of them fails, CR is discarded):

1. CR.a = a —request came from the same network instance

2. CRB € P and 0 € PD[CRB].SH — request came from a legitimate shard of a
registered partition

CR.v € ST[CR.B,CR.c].V — request came from an authorized validator

CR.7R.n = 871B,0].n + 1 —round number is correctly incremented

CR.IR.e = SI|B,0].e —epoch number matches

CR.IR.0 = 8T8, o].h- — previous round’s root hash in IR matches the recorded one

(CR.IR.h = CR.IR.I) = (CR.IR.hg = Oy) — if current round’s root hash coincides
with the previous round’s root hash, then the block must be empty, and its hash has
to be the zero-hash; and vice versa

. PDIBl.y(CR.IRv,PDIB].VI[o]) — summary value check (of the shard) succeeds

9. CR.IR.t = SI|B,0].UC_.IR.C".t — time reference is equal to the time field of the
previous unicity seal

N o koL

o

Only one (majority-voted) certificate request (denoted by CRg,) is accepted from every
shard.

When the Root Partition’s round n is completed, then:

November 29, 2024 30/140

preliminary release

1. For every B € P, and o € SH; with accepted certificate request ':
1.1 S7[B,0]l.n <« CR.IR.n
1.2 SI[B,0].h. « CR.IR.h

1.3 S7[B,0].SR.n, «— SI[B,0].SR.n, + 1

1.4 ST[B,0].SR.f « SI[B,0].SR.f;z + CRIR.f3

1.5 SI[B,01.SR.€5 « SI[B,0].SR.€5 + CR.IR.L;

1.6 ST[B,0].SR.¢s « SI[B,0].SR.ls + CR.IR.(s

1.7 SI[B,c].SR.fz « max{SI[B,o].SR.fz CR.IR.f3}

1.8 SI[B,o].SR.&5 «— max{SI[B,0].SR.lg, CR.IR.C5}

1.9 ST[B,o].SR.&s «— max{SI[B,o].SR.Ls,CR.IR.Ls)}

1.10 Leader fees:
SIB, ol VFISI|B,o)v,] « SI[B, o)l VFISI[B,0].v]+CRIRf5 ,
where it is assumed that VF[L] =0, even if VF =0

1.11 The leader for next round:
STI[B,0].ve < LEADERFUNC(UC_, ST (B, 0].V)

1.12 Technical record:
T Epo — (SIB,0ln+ 1,8I[B,0l.e, SIB,0].ve, hsr, hyt)
where hy, = H(SI[B,0].SR_,S7[B,0].SR) ,
and hy = HSIB,0]l.VF_,SIB,0]l.VF) ,
where the hash H(V¥ _, V¥) is computed assuming that the records indexed
by validator identifiers v are in the increasing lexicographic order.

2. For every registered partition g € P, the collected certification requests CR;, are
converted to a temporary data structure 7R7 5 of type (IR, H)[SHj;], where SH; =
PDIBL.SH, and IRT slo] = (CRs . IR, H(T Epr));
if there is no request then respective leaf repeats its previous value. If there is no
previous value, the leaf is initialized to Oy.

3. For every g € P, the shard tree x4 (Sec. 3.1.6) is created by the function call y; <
CreateShardTree(SHj, IR7 5) (Sec. 3.1.6.1).

4. A temporary data structure 7H of type H[#] is created such that 7H|[B] < xs(|l) for
every B € P, i.e. ITH contains the root hashes of the shard trees.

5. The root of unicity tree is computed as r « CreateUnicityTree(P,PD,ITH)
(Sec. 3.2.1)

6. Unicity seal C" = (a,n,e,t,r_, r; s) is created, where t « time() is the current time and
s is a "signature" on all other fields. The form of s depends on the used consensus
mechanism.

7. For every B € P, the unicity tree certificate C;;“‘ is created by the function call C,g”‘ —
CreateUnicityTreeCert(8, P, PD, IH) (Sec. 2.9.4.1)

8. Forevery g e P, and o € SHp:

8.1 The shard tree certificate C;f‘jrd (Sec. 2.9.3) is created by the function call
Csh — CreateShardTreeCert(c, x4) (Sec. 2.9.3.1)

'Please refer to the Consensus chapter for details; notably a “request” may be induced for technical
reasons

November 29, 2024 31/140

preliminary release

8.2 The unicity certificate UCs, = IRT slo]. IR, IRT slo].hy, C;f‘jrd,cg”‘,cr)
(Sec. 2.9.6) and the certification response CReSg, = (a.B8,0;UCsy, T Ep)
are composed (if the shard input have changed)

8.3 The last unicity certificate field is updated by S7[B,clUC_ « UC (if the shard
input have changed).

9. The round number and the previous root hash of the unicity tree are updated by

n—n+landr. «r.

When a shard’s (identified by 3, o) epoch with at least one produced block ends, the fol-
lowing assignments are executed:

SI[B,0].SR. « SI[B,0].SR

ST[B,0].SR « (0,0,0,0,0,0,0)

STB, 0]l VF_ «— VF and SI[B,0].VF « 0 — update the validator fees structure
SI[B,0).e — SIB,ole+1

The new validator set ST (B, o].V is chosen

o M 0~

November 29, 2024 32/140

preliminary release

4 Base Partition Type

4.1

Parameters

Every partition in the Alphabill network is completely defined by the following parameters:

1.
2.

a — network identifier of type A
[— partition identifier of type P

3. PD[B] = (tidlen,uidlen, st,SD,SH,V, Fc,1rc) — partition description of type PD.

© © N O

When specifying a partition with identifier 8, we use the shorthand notation SH =
PD[B].SH

PrndSh — function of type IU x OCT* — IU such that fs(PrndSh(t, X)) = fsu(¢) for
every t and X

So — initial state of type S = P X {0, 1}* X SH X Ngy x I x ND[I] x UB x SD[P], where
ND=(HU{L)XxHXxD)yxHxDxV xHxIxIis the node type

RInit — round initialization procedure of type S — S

RCompl — round completion procedure of type S — S

T — transaction identifier type (a finite set)

Forevery r € T:

9.1 AT, — attributes type

9.2 PT, — transaction authorization proofs type

9.3 TO, =(PxTx1Ix AT, x MC) x PT, x (OCT* U {L}) — derived transaction order
type

9.4 TR, = TO, x MS — derived transaction record type

9.5 ¢, — predicate of type TO, X S — B

9.6 Action, — function of type TO, xS — S

Desirable features of the PrndSh function are:

1.

2.

Collision resistance — infeasibility of finding X # X’ and ¢ such that PrndSh(¢, X) =
PrndSh(t, X’)

Uniformity — for any ¢, and sufficiently large n, if X « OCT" is uniformly distributed
in OCT", then the probability distribution PrndSh(:, X) is indistinguishable from the
uniform distribution on the set {¢’ € IU: fsu (') = fsu (1)}

For interoperability between different implementations, PrndSh is defined as

PrndSh(s, X) = o0 . .. OeXe+1Xe+2 - - - X8-uidlen »

November 29, 2024 33/140

preliminary release

where o0, ... 0 is the binary representation of fss(¢) and yx2 . .. xs.iden iS the output of
a collision-resistant hash function H*: OCT* — {0, 1}¥{de_|n other words, PrndSh(, X) is
H*(X) with the leftmost bits replaced with those of fss(¢).

The function H* in turn should be constructed from a collision-resistant hash function H
with k-bit outputs (H: OCT* — {0, 1}*) by taking H*(X) = h?hg ... hgh}hé .. h,ﬁ o hURY R
where 8-uidlen = m-k+iwith 1 <i < kand h{hé . .h,i is the binary representation of H(X, j).
In other words, H*(X) is the 8 - uidlen leftmost bits of the concatenation H(X, 0)||H(X, 1)l ...

4.2 Shard

4.2.1 State of a Shard

State of a shard of a partition is a tuple (@, 8, o, n, e, i, N, 7 ,PD), where:

1. a — network identifier of type A

2. B — partition identifier of type P

3. o —shard identifier of type {0, 1}=3PPiAluidien
4. n—round number of type Ng,4

5. e —epoch number of type Ng,

6. ¢, — root node identifier of type I

7

. N — state tree of type NDII], i.e. a node N[¢] of type ND is assigned to some identi-
fiers ¢ of type I

8. 7 — unicity trust base of type UB
9. PD —partition descriptions of type PD[P] for all registered partitions (including PD[5])
State size is }, IN[¢].D|, where the summation is over all ¢ with N[:] # L and |N[:].D| is the

size (in bytes) of the same representation of N[¢].D that is used to compute the hash H(D;)
in Sec. 4.2.2.2.

4.2.2 State Tree
State tree (N) is an AVL tree of State Tree Nodes (Sec. 4.2.2.1).

4.2.2.1 Node of the State Tree

Node N[.] of type ND is a tuple (S,hy, D, V,h,t1,tg), with S = (§1,8,,...,8,) and S; =
(ti, x;, D;), where:

1. § — log of state changes of the unit during the current round, with each record S;
consisting of

1.1 1; — the hash of the record of the transaction that brought the unit to the state
described in §;, of type HU {1}

1.2 x; —the new head hash of the unit ledger, of type H
1.3 D; —the new unit data of type D

2. hy —root value of the hash tree built on the state log S

3. D —current unit data of type D

November 29, 2024 34/140

preliminary release

V — summary value of the subtree rooted at this node, of type V
h —summary hash of the subtree rooted at this node, of type H

t; — left child node identifier of type I

N o o A

tg — right child node identifier of type I

4.2.2.2 Invariants of the State Tree

Definitions for the node with identifier O;:

N[O].V =V,
N[O].h = Oy

For¢# 0y and N[¢] = (S, hy, D, V, hy1p, 1) # L:

x; = Ho(xi_1, t;) foralli € {2,...,]S]} (Sec. 4.6)

hg = PLAIN_TREE_ROOT({Z1, . . ., Zs))), Where z; = H(x;, H(D;))
D = Dy

V = Fs(V{(D), N[w.].V, N[k].V)

h = H(t, hs, V; N[t].h, N[t].V; Nleg].h, N[ig].V)

4.2.2.3 Unit Manipulation Functions

Actions on state tree nodes should be defined through the following helper functions:

1. Addltem(t, D) — Adds a unit with identifier c and data D; N[¢] « (L, {), L, D, V, h, 0, 0y),
where V = Vs(D), and h = H(, 1,V; Og, Vos Og, Vo)

2. Delltem(t) — Deletes the unit with identifier ¢

4.3 Transaction Fees

Fees provide the incentive for the validators to process transactions and thus effectively run
the partitions. All fees in all Alphabill partitions are handled in the Alphabill native currency.
The fees are expected to be low compared to the values of the transactions themselves
and therefore a more lightweight credit balance based system is used to handle them.

The general process for fee payments consists of three phases:

¢ To prepare to transact on an application partition, the user first executes a special
“transfer to fee credit” transaction on the money partition and presents a proof of the
transaction to the application partition in order to obtain or top up a fee credit balance.

e Executing transactions on the application partition, the user gradually spends their
fee credit.

e For each block, the application partition reports the sum of earned transaction fees to
the root chain; based on that information, a governance process periodically issues
payment orders on the money partition to pay out the fees earned to the application
partition validators.

November 29, 2024 35/140

preliminary release

4.3.1 Fee Credit Records

To facilitate the above process, each application partition maintains a fee credit record for
each user who has obtained a fee credit balance on that partition. Fee credit records are
stored in the state tree of the application partition as nodes of a dedicated type with the
node data D = (b, ¢, ¢, c, t), where:

1. b — current balance, of type Ng,; the value is represented in fixed point format with
8 fractional decimal digits; this means that a balance of 1 ALpHA is stored as b =
100000000 and b = 123 represents 0.00000123 ALPHA

2. ¢ —owner predicate of type L

3. ¢ — lock status of the record, of type Ng,4; allows locking of the record at the begin-
ning of a multistep protocol that needs the transaction counter to remain unmodified
by other transactions during the protocol execution; ¢ = 0 means the record is not
locked, any other value means it's locked; note that locking a record does not pre-
vent spending the credit on the record to process other transactions, it only applies
to actions directly targeting the record, like adding or reclaiming fee credits

4. ¢ — transaction counter, of type Ng4; incremented with each “add fee credit”, “close
fee credit”, “lock fee credit”, and “unlock fee credit” operation with this record; note
that spending fee credit when executing other transactions does not affect this value

5. t — the minimum lifetime of this record, expressed as the round number of type Ngg;
when the balance goes to zero, the record may be “garbage collected” only after this
round

On the other hand, the fee credits transferred by users to the partition 8 and not yet paid
out to the validators of the partition are tracked as a special bill ¢; in the money partition.
Such special bill is maintained also for the money partition itself.

4.3.2 Fee Credit Manipulation Functions

Actions on fee credit records should be defined through the following helper functions:
1. AddCredit(¢y, v, ¢, t) — Calls Addltem(cy, (v, ¢, 0,0,1)); in other words, adds a new
credit record (v, ¢y, 0, 0, 1) with the identifier ¢,
2. DelCredit(¢;) — Calls Delltem(¢s); in other words, deletes the credit record ¢f

3. IncrCredit(cf,v,t) — Sets N[if]l.D.b « N[if].D.b + v, N[if].D.c < N[i].D.c + 1,
Nlif].D.€ < 0, N[tf].D.t < max(N[¢s].D.t,t); note that N[¢s].D.p remains unchanged
in this operation

4. DecrCredit(ts,v) — Sets N[is].D.b < Nl[is].D.b — v; note that N[¢s].D.¢, Nlis].D.c,
Nl¢s1.D.¢, and N[is].D.r remain unchanged in this operation

4.4 Valid Transaction Orders

LetS = (a,B,0,n,e,t,, N,7,PD) be a state where N[i] = (S, hy, D, V, h, 1, tg).

Transaction order T' = (a, 8,1, 7, A, Mc, P, s¢), with M = (T, fu, s, p), is valid if the following
conditions hold:

1. T.a = S.a —transaction is sent to this network

November 29, 2024 36/140

preliminary release

T.p =SB —transaction is sent to this partition

fsu(T.t) = S.0 —target unit is in this shard

S.n < Ty — transaction has not expired

ExtrType(is) = fcr A N[if] # L —the fee payer has credit in this shard

® 0o A W N

VerifyFeeAuth(N[is].D.@, T, T.s;) — fee authorization proof satisfies the owner predi-
cate of the fee credit record

7. fm < Nli].D.b — the maximum permitted transaction cost does not exceed the fee
credit balance

8. PD.F(T,S) < f, —the actual transaction cost does not exceed the maximum per-
mitted by the user

9. y.(T,S) — type-specific validity condition holds

The “transfer to fee credit” and “reclaim fee credit” transactions in the money partition
(see 5.2.7.1 and 5.2.7.4) and the “add fee credit”, “close free credit”, “lock fee credit”,
and “unlock fee credit” transactions in all application partitions (see 5.2.7.2, 5.2.7.35.2.7.5,
and 5.2.7.6) are special cases: fees are handled intrinsically in those transactions; there-
fore, no separate fee authorization data (. and s¢) should be present and the conditions 5
to 7 above do not apply.

4.41 Validation Helper Predicates

VerifyFeeAuth —fee authorization predicate evaluation function of type LXTOXOCT"* — B;
for predicate ¢, the transaction order T’ = {(«, B,¢, 7, A, M, P, s¢), and the authorization
proof s¢, the result is defined as ¢((e,B,t,7,A, Mc, P), N[T.t], s¢); in other words, the
predicate ¢ receives the tuple (@,8,t, 7, A, Mc, P), the current state of the unit, and
the proof s, as inputs.

VerifyTxAuth — transaction authorization predicate evaluation function of type L x TO x
OCT" — B; for predicate ¢, the transaction order T = {(a,,t,7, A, Mc, P, s¢), and the
authorization proof s, the result is defined as ¢((a,B,t, 7, A, Mc), N[T.c], s); in other
words, the predicate ¢ receives the tuple (a,f,t, 7, A, M¢), the current state of the
unit, and the proof s as inputs

4.5 Execution Round

4.5.1 Round Initialization: Rinit

The round initialization procedure consists of the following steps:

1. Prune the state change history for all units that were targeted by transactions in the
previous round:
1.1 Find all such units: 7 « {¢: N[t] # L A |N[¢].S|> 1}
1.2 Forallce I
1.2.1 x & N[t].S npsp-x
1.2.2 N[t].S « (L, x,N[].D))

2. Delete all unlocked fee credit records with zero remaining balance and expired life-
time:

November 29, 2024 37/140

preliminary release

2.1 Find all such records:
I « {t: ExtrType(t) = fcr A N[t # L A N[].D.b = 0 A N[].D.L =
0 A N[t].D.t < S.n}

2.2 Forall € 7: Delltem(v)
3. Rinitz — execute the partition specific initialization steps

4.5.2 Executing Transactions

Execution of the transaction order T = («,B,t,7,A, Mc, P, s¢), With M¢c = (To, fu, L5, p),
consists of the following steps:

1. My « (SPDIBl.Fc(T,S),1, L) — initialize the transaction processing metadata
(these initial values may be overwritten by Action;)
2. Action, — execute the type-specific actions

3. Append the transaction record and the new state to the change logs of all units af-
fected by the transaction; for each ¢ € targets(T):

3.1 t « Hy(T||Ms) — compute the hash of the transaction record
3.2 If|N[].S| = 0: —this is a freshly created unit
3.2.1 x « Hy(L,t)—initialize the unit ledger
3.3 If|N[¢].S| > 0: —this is a pre-existing unit
3.3.1 x & N[].S npy.51-x — get the current head hash of the unit ledger
3.3.2 x « Hy(x,t) — compute the new head hash of the unit ledger
3.4 N[t].S « N[].S5]||(t, x, N[¢].D) — append to the change log
4. DecrCredit(T.-Mc..s, Ms. f,) — decrease the balance of the corresponding fee credit
record

The “transfer to fee credit” and “reclaim fee credit” transactions in the money partition
(see 5.2.7.1 and 5.2.7.4) and the “add fee credit”, “close free credit”, “lock fee credit”,
and “unlock fee credit” transactions in all application partitions (see 5.2.7.2, 5.2.7.35.2.7.5,
and 5.2.7.6) are special cases: fees are handled intrinsically in those transactions; there-
fore, step 4 above is skipped when processing those transactions.

4.5.3 Round Completion: RCompl

The round completion procedure consists of the following steps:

1. RCompl, — execute the partition specific completion steps

4.6 Unit Ledger

Unit ledger is a list R, R,, ..., R, of unit records.

Unit record is a tuple R; = (T}, C¥™, C'®, UC;), where
1. T! — optional transaction record of type TR U {1},

2. CU"' — unit tree certificate,
3. o — state tree certificate,

November 29, 2024 38/140

preliminary release

4. UC; - unicity certificate.

The unit tree certificate C}”‘“ is computed from the current unit data D, and the ledger state
hash x, of the unit «. The certificate contents also depend on the values D/, x] of other
states of the same unit.

The state tree certificate is computed from the identifier « and the summary hash and
summary value h,, V, of the unit .. The certificate contents also depend on the summaries
h,, V, of other units.

The ledger state hash x; is computed as

o= { Ho(xi-1, H(T))) ifi>0

1 ifi=0
where
b - { 100 14
and
o= JO60 172

The structure of a unit ledger is depicted in Fig. 5

Uuc, uc, UGC; e uc,
C?tate Cgtate Ct3ree . Crsr}ate
|V Vi) (| V3) (¢ Vin)

C;mit anit Cgmit Cznit Cgmit .. Czlfllt Clélnit

D, iD 1 TDz D; iD% Di_1 | Dy
1l >0 -----50——0——(O- - - - - - -- -
X1 X1 X2 X3 X3 Xi—1 Xk
h [5) 1) Iy
T T, Ty Ty

Figure 5. The structure of a unit ledger. In round 1, the unit was created by transaction
T|. Inround 2, the unit started in the state copied from round 1 and was then updated
by transactions 7, and T;. The three states in which the unit was during round 2 have
distinct unit tree certificates, but they share a common state tree certificate and a common
unicity certificate. In round 3, the unit remained in the state copied from round 2 with no
transactions. In round m, the unit was brought to its current state by transaction 7.

November 29, 2024 39/140

preliminary release

N[2] N[2] N[2]

[

i I
i 0 5\]
N[3] N[3]
N[1] N[1] é
0

Figure 6. Evolution of the state tree and unit ledgers.

Round r Round r + 1
h; hr+1
7N VAN
t,x1,Dy 1, xp, Dy 13,X3,D3 t4,x4,D4

Figure 7. Evolution of a unit’s state and the unit trees in two rounds.

TN
%) U, le

7N 7N

L Uy 3 5 Ug U7

T T 1 T
U1 U3 U5 U7

Figure 8. Embedding of unit trees in the state tree: ¢; are unit nodes in the state tree (these
form a binary hash tree), U; are the unit trees linked to each unit node.

4.7 Blocks

4.7.1

Block of a Shard

Block is atuple B = (8,0, h_, Vprop); T{, ..., T;; UC), where:

1.

A

B — partition identifier

o — shard identifier

h_ — hash of the previous block

Vorop — block proposer’s identifier

T{,..., T, —transaction records of the block

UC - unicity certificate

November 29, 2024 40/140

preliminary release

Existence of a transaction in a block is the proof of processing of this transaction during
the block’s round (UC.IR.n) and this changes the state: k > 0 = UC.IR.h # UC.IR.N A
BLOCK_HASH(B) # Oy. Inclusion implies transaction execution only if 7".M.r = 1.

If Kk =0 and UC.IR.W' = UC.IR.h then the block is empty block and BLock_HASH(B) = Oy. If
k = 0 but the round initialization and finalization functions RInit, RCompl change the state
then the block still carries information about the state change; we call the block emptyish
and define the block hash so that it is not empty: UC.IR.h # UC.IR.' = BLOCK_HASH(B) #
Og.

Block’s network is identified by B.UC.C".a.

4.7.2 Genesis Block of a Shard
Genesis block is a tuple By = (a,B,0,n,e,t,, N, T ,PD) where:

. a — network identifier of type A

. B — partition identifier of type P

. o — shard identifier of type {0, 1}=8PPl.uidien
. n—round number of type Ng4

. e —epoch number of type Ng,4

. t, —root node identifier of type I

N OO 0o A WD =

. N — state tree of type NDII], i.e. a node N[¢] of type ND is assigned to some identi-
fiers ¢ of type I

8. 7 — unicity trust base of type UB

[(e]

. PD — partition descriptions of type PD[P] for all registered partitions (including PD[3])

4.7.3 Block Creation: CreateBlock
Input:

1. State (o,8,0,n,e,t,, N,T,PD)
2. Sequence of transaction orders T, ...,T,,

3. Block hash of the previous block %_, obtained as 4 < B’.UC.IR.hg = BLOCK_HASH(B’),
where B’ is the preceding non-empty block.

Output: Block B = ((B,0,h_,v);T{,...,T;;UC), where T|,..., T, are transaction records
of successfully validated transactions in the same order as they appear in (T, ..., T,).

The procedure changes the state.

Computation:

Execute the round initialization procedure Rinit
k0
fori—1...mdo
if T, is valid in terms of Sec. 4.4 then
Execute T; as described in Sec. 4.5.2
k—k+1
T| « Til|Ms, where M; is created during execution

November 29, 2024 41/140

preliminary release

Add T to the block

end if
end for
Execute the round completion procedure RCompl
Record Block Proposer identifier vy, (defined and verified by the underlying consensus
mechanism)
Send certification request («, B, o, v; IR, £, {s) to the root partition, where £ is the block
size computed as described in Sec. 4.7.6 and ¢ is computed as described in Sec. 4.2.1.
Obtain UC that certifies the block
return B = (8,0, h_, vprep): T}, ..., T;; UC)

4.7.4 Block Verification: VerifyBlock
Input:

1. Block B ={(B,0,h_,v);T{,...,T;UC)
2. Unicity trust base 7

Output: True or FaLse

This function also checks if the network which created the block matches with the network
instance identifier encoded in 7.

Computation:

X < BLOCK_HASH(B)
return (VerifyUnicityCert(UC,7) =1 A UC.IR.hg = x)

4.7.5 Block Hash: BLOCK_HASH

Hash of a block is computed as hash of (hash of block header fields || state change || tree
hash of transactions).

Input: Block B = (8,0, h_,v); T},...,T;; UC)
Output: Hash of type H

Computation:

function sLock_HAsH(B)
if K = 0 then
if UC.IR.W = UC.IR.h then > Empty block
return Oy
else > “Emptyish” with state change
return HH(B,o,h_,v),(UC.IR.I,UC.IR.h),0y)
end if
else
fori — 1tokdo
h; < H(T})
end for
return H(H(\B, o, h_,v),(UC.IR.h', UC.IR.h), PLAN_TREE_ROOT({ /1, ..., h)))
end if
end function

November 29, 2024 42/140

preliminary release

4.7.6 Block Size

The size of the block B = ((B,0,h_,v);T|,...,T;;UC) is Zf;l IT!|, where |T/| is the size
(in bytes) of the same representation of 7/ that is used to compute the hash h; = H(T))
(Sec. 4.7.5).

November 29, 2024 43/140

preliminary release

5 Money Partition Type

5.1 Motivation and General Description

5.1.1 Pure Bill Money Schemes

Pure bill-type money schemes only have transfer type transactions (Fig. 9) that change the
owner predicates of bills.

Pure bill schemes enable massively parallel decompositions of the money system, but also
have shortcomings. Similar to physical cash, it is not always possible for a party to pay
exact amounts and therefore, some additional services, like exchanges, are needed.

...

..

Figure 9. Bill transfer.

5.1.2 Extended Bill Money Scheme

Extended bill money scheme addresses the shortcomings of pure bill schemes by intro-
ducing split type payments (Fig. 10) that make exact payments always possible.

...

...

Figure 10. Bill split.

Split type transactions enable exact payments but introduce a new problem of having too
many small-value bills (dust bills) in the end. Therefore, additional transactions and ledger
mechanisms are needed to reduce the amount of dust bills by joining them to larger bills.

5.1.3 Dust Collection

Dust collection addresses the issue of dust bills by introducing new types of transactions
as well as a new type of unit with value.

November 29, 2024 44 /140

preliminary release

In the extended bill scheme, a special type of ownership — Dust Collector (DC) is used.
Users can transfer their dust bills to DC via a special transfer type transaction transDC
(Fig. 11) and get a proof of having done so.

...

..

Figure 11. Transfer of dust bills to Dust Collector.

By presenting those proofs to the system, users can then obtain a new, larger-value bill via
swapDC transactions (Fig. 12).

o "

...

Figure 12. Swap with Dust Collector.

Formally, the Dust Collector (DC) controls a fraction of total money in the system. This
money is called dust collector money supply and is represented as a special bill with iden-
tifier (pc. For issuing a new bill with value n to a user, the dust collector money supply is
reduced by n.

If the system is sharded, then every shard must have its own DC money supply.

The transfers to DC and swaps with DC alone do not reduce the number of small-value
bills in the system. There has to be a mechanism of joining the dust bills.

In the extended bill scheme, dust collection is introduced as a necessary automatic func-
tionality related to block creation, i.e. every block creator has to regularly, as defined by the
ledger rules, delete the dust bills and simultaneously rise the CB money supply by an equal
amount. Such a method is depicted in Fig. 13, where dust bills (¢, vy, DC), ..., (t, v, DC)
are deleted and their value is added to the DC money supply by raising the value of the DC
bill (tpc, vo, DC) by d =vi + ...+ .

All the activities related to dust collection preserve the total money of the system, including
the DC money supply.

The DC money supply is just a technical system-related measure and not designed for
actively supporting business transactions with the money.

5.1.4 Money Invariants

There are two types of money in Alphabill’s ledger:

1. User money with total value v ser formed by the existing bills not owned by DC

2. Dust collector money with total value vpc formed by the existing bills owned by DC
and the DC money supply.

November 29, 2024 457140

preliminary release

..

(l()a V()a DC) o

: (1,v,,DC) 0 d=v + ...+,

- (4v,DC) @

-
..

Figure 13. Dust collection.

Money invariant: The value vy = vyser + voc iS CcOnstant in every shard

Swap money: The sum vg.ppc Of the values of all dust bills paid to DC for which the
swapDC has not yet been executed is not locally (shard-wise) verifiable, it is only verifiable
from the global state (the combination of the states of all shards). We call such money
swap money.

There are two more invariants that are not locally verifiable:

o V& = Viser + Vswapnc — effective user money

o V2 = vpc — vswappc — effective dust collector money

These two invariants are locally verifiable only if vsyappc = 0.

Figure 14. Types of money and money invariants.

5.2 Specification of the Money Partition

5.2.1 Parameters, Types, Constants, Functions

System type identifier: st = 1

Partition identifier for the primary instance managing the ALpHA currency: Bmoney = 1
Type and unit identifier lengths for the primary instance: tidlen = 1, uidlen = 32
Summary value type V: Ng,

Summary trust base: V = vy

November 29, 2024 46/140

preliminary release

Summary check: y(V, viota) = V = viotal
Unit types: U = {bill = 1, fcr = 16} (bills, fee credit records)

Unit data D, depends on the unit type u as follows:

e Dy tuples (v, ¢, €, c) where:

— v —value of type Ng,; the value is represented in fixpoint format with 8 fractional
decimal digits; this means that a bill with value 1 ArpHA has v = 100000000 and
v = 123 represents 0.00000123 ALpHA

— ¢ — current owner predicate of type L

— ¢ —lock status of the bill, of type Ng4; allows locking of the bill at the beginning of
a multi-step protocol that needs the bill to remain unmodified by other transac-
tions during the protocol execution; £ = 0 means the bill is not locked, any other
value means it’s locked

— ¢ —transaction counter of type Ng,
e Dir = (b, 0,4, c,t), Wwhere

— b € Ng, is the current balance of this record, in fixpoint format with 8 fractional
decimal digits

¢ —owner predicate of type L

— ¢ € Ng, is the lock status of the record; £ = 0 means the record is not locked,
any other value means it’s locked

¢ — transaction counter of type Ng,
t € Ng4 is the minimum lifetime of this record

Summary functions:

e V(D) = D.v for Dy, or O otherwise
o Fs(v,vi,vg) = v+vp +vg

o Fg(L,vp,vg) =vL + Vg
Summary value of zero-unit: N[0;].V =0

Transaction types: T = {transB = 1, splitB = 2, transDC = 3, swapDC = 4, lockB = 5,
unlockB = 6, transFC = 14, reclFC = 15, addFC = 16, closeFC = 17, lockFC = 18,
unlockFC = 19} (transfer a bill, split a bill, transfer to dust collector, swap with dust collector,
lock a bill, unlock a bill, transfer to fee credit, reclaim fee credit, add fee credit, close fee
credit, lock a fee credit record, unlock a fee credit record)

5.2.2 Transfer a Bill
Transaction order T = (a,B,t,transB, A, M, P, s;) with A = (v,¢,c), P = (s) and M¢ =
(To, fin-tr.p), Where:

e A.v € Ng4 is the amount to transfer;

e A.p € L is the new owner predicate;

e A.c € Ny, is the transaction counter value;

November 29, 2024 477140

e P.s e OCT" is the owner proof.

Transaction-specific validity condition:

Yirans(T, §) =
ExtrType(T..) = bill A S.N[T.]# L A
S.N[T.t].DL=0A
T.Av =S.N[T..].D.v A
T.A.c = S.N[T.\].D.c A
VerifyTXAuth(N[T.(].D.¢, T, T.P.s) = 1

That is,

T.. identifies an existing bill,

the bill is not locked,

the value to be transferred is the value of the bill,

the order contains the correct transaction counter value, and

the owner proof satisfies the bill’s current owner predicate.
Actions Actionianss:

1. N[T.].D.¢o < T.Ap
2. N[T.\].D.c < N[T.(].D.c+1

5.2.3 Split a Bill

Transaction order T = (a, 3,1, splitB, A, M¢, P, s¢) with A = ((vi, ¢1),
and M¢ = (To, fu. Ly, p), Where:

e Avy,...,A.v, € Ng are the amounts to transfer;

o Aypy,...,A.p, €L are the new owner predicates;

e A.c € Ng, is the transaction counter value;

e P.s € OCT" is the owner proof.

Transaction-specific validity condition:

Yspig(T,S) =
ExtrType(T..) = bill A S.N[T.t]# L A
S.N[T..].D£ =0 A
TAvi>0A ... NTAv,>0A
TAvi+...+T.Av, <S.N[T..].D.v A
T.Ac=S.N[T..].D.c A
VerifyTXAuth(N[T.(].D.¢, T, T.P.s) = 1

That is,

preliminary release

ooy Vs om)i0), P = (5)

November 29, 2024

48/140

preliminary release

T.. identifies an existing bill,
the bill is not locked,

the values to be transferred are all non-zero,

the sum of the values to be transferred is less than the value of the bill,

the order contains the correct transaction counter value, and

the owner proof satisfies the bill's owner predicate.
Actions Actiongis:

1. fori=1,...,m:

1.1 ; « NodelD(bill, PrndSh(ExtrUnit(T.c), T.l||T.A||T.Mc|li)), i.e. generate a new
bill identifier in the same shard

1.2 Addltem(y;, (T.A.v;, T.A.¢;,0,0)) — create a new bill ¢; with value v; and owner
predicate ¢;

2. N[T.].D.v « N[T.].D.v—(T.Av,+...+T.A.v,)—reduce the value of the source bill
3. N[T..].D.c < N[T.\].D.c+1

Targets: For splitB transaction T, targets(T) = {T.t,t1, 62, . . ., Ly}

5.2.4 Lock a Bill
Transaction order T = (a,p,t,10ckB,A, M¢, P, s;) with A = ({,¢), P = (s) and M =
(To, finsts,p), Where:

e A.l € Ng, is the new lock status;

e A.c € Ng, is the transaction counter value;

e P.s € OCT" is the owner proof.

Transaction-specific validity condition:

wlockB(T’ S) =
ExtrType(T..) = bill A S.N[T.t] # L A
S.N[T.].D.L=0 A
TAL>0N
T.A.c=S.N[T..].D.c A
VerifyTXAuth(N[T.(].D.¢, T, T.P.s) = 1

That is,

T.. identifies an existing bill,

the bill is not locked,

the new status is a “locked” one,

the order contains the correct transaction counter value, and

the owner proof satisfies the bill's owner predicate.

November 29, 2024 497140

Actions Actiona:

1. N[T.].DL «— T.AL
2. N[T.t].D.c < N[T.\].D.c+1

5.2.5 Unlock a Bill

preliminary release

Transaction order T = (a,f,t,unlockB, A, M¢, P, sy) with A = (¢), P = (s) and M¢ =

(T(), fma Lf,p), Where

e A.c € Ny, is the transaction counter value;
e P.s e OCT" is the owner proof.

Transaction-specific validity condition:

Yunocks(T,S) =
ExtrType(T..) = bill A S.N[T.]# L A
S.N[T..].D. >0 A
TA.c=S.N[T.].D.c A
VerifyTXAuth(N[T.(].D.¢, T, T.P.s) = 1

That is,

¢ identifies an existing bill,
the bill is locked,
the order contains the correct transaction counter value, and

the owner proof satisfies the bill's owner predicate.
1. N[T.].D.£ <0
2. N[T.].D.c < N[T.\].D.c+1

5.2.6 Dust Collection

As explained in Sec. 5.1.3, the purpose of the dust collection protocol is to join several
smaller-value bills into a single larger-value bill. The process consists of several steps:

1. A target bill is selected to receive the value of the collected dust bills. The target
bill may be any existing bill, but it must not be changed by other transactions during
the execution of the dust collection protocol. To ensure that, the target bill should be

locked using a lockB transaction.

2. The dust bills to be collected are “sent to dust collection” using transDC transactions.
To prevent replay attacks, each of the transDC transactions must identify the selected

target bill and its current state.

3. The total value of the dust bills is added to the target bill using a swapDC transaction.
As this transaction completes the dust collection process, it automatically unlocks the

target bill.

November 29, 2024

50/140

preliminary release

5.2.6.1 Transfer to Dust Collector

Transaction order T = <a’,ﬁ,L,tl’anSDC,A,MC,P,sf), with A = (v,,¢',¢), P = (s) and
Mc = (To, fu.ts,p), Where:

e A.v € Ny, is the target value;

A. € Iidentifies the target bill;
e A.c’ € Ny, is the transaction counter value for the target bill;

e A.c € Ny, is the transaction counter value for the source bill;

P.s € OCT" is the owner proof for the soure bill.

Transaction-specific validity condition:

Yiranspe (T, S) =
ExtrType(T..) = bill A S.N[T.t] # L A

S.N[T.].DL=0 A

T.Av =S.N[T..].D.v A
T.A.c=S.N[T..].D.c A
VerifyTXAuth(N[T.(].D.¢, T, T.P.s) = 1

That is,

T.. identifies an existing bill,

the bill is not locked,

the target value equals the value of the bill,

the order contains the correct transaction counter value, and

the owner proof satisfies the bill's owner predicate.
Actions Actionyanspe:

1. N[T.]).D.v « 0 — wipe out the bill value

2. N[T.].D.¢ « DC — mark the bill as collected

3. N[T.\].D.c < N[T.\].D.c+1

4. N[T.ipc].D.v « N[T.ipc].D.v + T.A.v —increase the DC money supply by bill value

5.2.6.2 Swap with Dust Collector

Transaction order T' = (a, 3,t,swapDC, A, M¢, P, s;), with A = ((T{,11)), ..., (T,,,1L}))), P =
(s) and Mc = (To, fm,ts,p), Where:

o AT{,...,A.T, € TR are bill transfer transaction records;
o AIl,,...,All, € XP are the transaction execution proofs of A.T7,...,A.T, ;

e 5 € OCT" is the owner proof for the target bill.

November 29, 2024 51/140

preliminary release

Transaction-specific validity condition:

wswapDC(Ta S) =
ExtrType(T..) = bill A S.N[T.]# L A

Tia=...=T, .a=T.aA

T\ B=..=T.B=TBA

Tiu<...<Tp,tA

Tit=...=T,.t=transDC A
TIAU=...=T,.Ad =LA

T{.Ac =...=T, Ac’ =S.N[T.].D.c A

Verify TxProof (T}, I1,), 8.7, S PDIT;) = 1 A
A

VerifyTxProof((T/, 11!), S.7, S PD[T., L) =1 A

VerifyTXAuth(N[T..].D.¢, T,T.P.s) = 1 A
T{.A.v +...+ Tr,n.A.V < Nltpc].D.v

That is,

e T..identifies an existing bill,
e transfers were in this network,
e transfers were in this partition,

e transfer orders are listed in strictly increasing order of bill identifiers (in particular, this
ensures that no source bill can be included multiple times),

e bills were transferred to DC,

e bill transfer orders contain correct target identifiers,

¢ bill transfer orders contain correct target counter values,

e transaction proofs of the bill transfer orders verify,

e the owner proof satisfies the target bill's owner predicate, and
e there is sufficient DC-money supply.

veT{Av+...+T, Av—the value to join to target bill
. N[T.pcl.D.v < N[T..pc].D.v — v — decrease the DC money supply
. N[T.].D.v < N|T..].D.v + v —increase the value of ¢

. N[T.].D.L <O

. N[T.t{].D.c < N[T..].D.c +1

oA W N =

5.2.7 Fee Credit Management

Adding and reclaiming fee credits are multi-step protocols and it's advisable to lock the
target unit to prevent failures due to concurrent modifications by other transactions.

More specifically, for adding fee credits:

November 29, 2024 52/140

preliminary release

1. If the target fee credit record exists, it should be locked using a lockFC transaction in
the target partition.

2. The amount to be added to fee credits should be paid using a transFC transaction in
the money partition. To prevent replay attacks, the transFC transaction must identify
the target record and its current state.

3. The transferred value is added to the target record using an addFC transaction in the
target partition. As this transaction completes the fee transfer process, it automati-
cally unlocks the target record.

And for reclaiming fee credits:

1. The target bill should be locked using a lockB transaction in the money partition.

2. The fee credit should be closed using a closeFC transaction in the target partition.
To prevent replay attacks, the closeFC transaction must identify the target bill and its
current state.

3. The reclaimed value is added to the target bill using a reclFC transaction in the money
partition. As this transaction completes the fee transfer process, it automatically un-
locks the target bill.

5.2.7.1 Transfer to Fee Credit

Transaction order T' = (a,f,t,transFC, A, M¢, P, s¢), with A = (v, 8, /, ¢’, ¢, ¢), P = (s) and
MC = (T(),f;n,tf,p), where:

e A.v € Ny, is the amount to transfer;

e A € Pis the target partition identifier;

o Al €l,p is the target fee credit record identifier;

A.c’ € Ngy U {1} is the the target transaction counter value; for the proof of transfer to
be usable in a following addFC operation, this must be set to the current transaction
counter value of the target credit record if the record exists, or to L if the record does
not exist yet;

e A.r' € Ny, is the latest round in which the corresponding “add fee credit” transaction
can be executed in the target partition;

e A.c € Ny, is the transaction counter value for the source bill;

P.s € OCT" is the owner proof for the source bill.
Transaction-specific validity condition:

Yiransre (T, S) =
ExtrType(T.c) = bill A S.N[T.]# L A
S.N[T.].D.t =0 A
TAv <S.N[T.].Dv A
TA.c=S.N[T.].D.c A
T Mc.fn <TAV A
TMciy=1 AN sp=1A
VerifyTXAuth(N[T.(].D.¢, T, T.P.s) = 1

November 29, 2024 53/140

preliminary release

That is,

¢ identifies an existing bill,

the bill is not locked,

the amount to transfer does not exceed the value of the bill,

the order contains the correct transaction counter value,

the transaction fee can’t exceed the transferred amount,

there’s no fee credit reference or separate fee authorization proof, and
the owner proof satisfies the bill's owner predicate.

Actions Actionynsrc:

1. N[T.].D.v « N[T.i].D.v — T.-A.v
2. N[T.].D.c < N[T.].D.c + 1

Note: The transferred credits will be aggregated and added to the target partition’s fee bill
at the end of the round. The processing fees will be aggregated and added to the money
partition’s fee bill at the end of the round. Reporting of earned fees and payouts from the
partition’s fee bill to the validators will be handled in the usual way.

5.2.7.2 Add Fee Credit

Transaction order T = (a,3,t,addFC, A, Mc, P, s;), with A = (¢, (T, I1)), P = (s) and M¢ =
(To, finstr»p), Where:

e A.p € L is the target fee credit record owner predicate;
e A.T’ € TR is a bill transfer transaction record;

e A.IT" € XP is the transaction execution proof of A.T”;

e P.s € OCT" is the owner proof for the target record.

Transaction-specific validity condition:
Yadarc(T,) =
ExtrType(T.t) = fcr A (
(S.N[T..] = L A ExtrUnit(T.c) = PrndSh(ExtrUnit(T.t), T.A.¢||T".A.t")) V
(S.N[Tu]# L AN T.Ap =S.N[T.l].p)
) A
T"a=T.a N T B=PLmoney N T'.T=1transFC A
T'"AB =TB ANT Al =T A (
S.N[Ti =L AT Ac'=1)V
(S.N[T]#L AT .Ac"=S.N[T.t].c)
) A
T"At >2S.nA
VerifyTxProof((T’,11'), S.7,S PDIT' Bl) = 1 A
T'.Mg.f,+ T.Mc.f,, <T . Av A
TMcag=1L N sp=1LA
VerifyTxAuth(T.A.p, T, T.P.s) = 1

November 29, 2024 54 /140

preliminary release

That is,

e T..identifies a fee credit record (either new or pre-existing),

o if the target does not exist, the identifier must agree with the owner predicate,
o if the target exists, the owner predicate must match,

¢ the bill was transferred to fee credits in this network,

¢ the bill was transferred to credits for this partition and the target record,

¢ the bill transfer order contains the correct target counter value;

¢ the bill transfer is valid to be used in this block,

o proof of the bill transfer order verifies;

¢ the transaction fee can’t exceed the transferred amount,

¢ there’s no fee credit reference or separate fee authorization proof, and

e the owner proof satisfies the bill's owner predicate.
Actions Actiongqrc:

1.V « T .Av-T .Ms.f, — Ms.f, —the net value of credit
2. if S.N[T.] = L:

2.1 AddCredit(T..,Vv',T.A.p, T".A.t")
3. else:

3.1 IncrCredit(T..,Vv', T'.A.t")

Note: Reporting of earned fees and payouts from the partition’s fee bill to the validators will
be handled in the usual way.

5.2.7.3 Close Fee Credit

Transaction order T' = (@, 5, ¢, closeFC, A, Mc, P, sp) with A = (v, ¢’), P = (s) and Mc =
(To, fins s, p), Where:

e A.v € Ng4 is the amount to transfer;
o A.l' € Imoney identifies the target bill;

e A.c’ € Ny, is the target transaction counter value; for the proof of closure to be usable
in a following reclFC operation, this must be set to the current counter value of the
target bill;

e A.c € Ng, is the transaction counter value for the source record;

e P.s € OCT" is owner proof for the source record.

Validity Condition

November 29, 2024 55/140

preliminary release

Yeloserc(T, S) =
ExtrType(T..) =fcr A S.N[T.] # L A

S.N[T.].DL =0 A
T.Av=S.N[T..].b A
T.A.c=S.N[T.t].c A

T.Mc.fr, < S.N[T.l].b A
TMcag=1L N sp=1LA
VerifyTXAuth(N[c].D.@, T, T.P.s) = 1

That is,
e T..identifies an existing fee credit record,
e the record is not locked,
e the amount is the current balance of the record,

the order contains the correct transaction counter value,

the transaction fee can’t exceed the current balance of the record,

there’s no fee credit reference or separate fee authorization proof, and

e the owner proof satisfies the record’s owner predicate.
Actions Actiongserc:

1. N[T.1].D.v < 0

2. N[T.t].D.c — N[T.\].D.c+1

Note: Reporting of earned fees and payouts from the partition’s fee bill to the validators will
be handled in the usual way.

5.2.7.4 Reclaim Fee Credit

Transaction order T' = (a, 3,1, reclFC, A, Mc, P, s¢), with A = ((T",IT)), P = (s) and M¢ =
(To, fm-t5,p), Where:

e A.T' € TR is a fee credit closure transaction record;
e A.IT" € XP is the transaction proof of A.T”;

e P.s e OCT" is the owner proof.

November 29, 2024 56 /140

preliminary release

Transaction-specific validity condition:

Yrearc(T,S) =
ExtrType(T..) = bill A S.N[T.t]# L A
T'.a =T.a AT'.t =closeFC A
T"Ad =Ta A
T".Ac =S.N[T.t].D.c A
Verify TxProof((T",11), S.7, S PDIT' B = 1 A
T' Ms.f, + T.Mc.f,, <T'.Av A
TMcaig=1 N sp=1LA
Verify TXAuth(N[T..].D.¢, T, T.P.s) = 1

That is,

T.. identifies an existing bill,

the order is a credit closure in this network,

the order targets the current bill,

the order contains the correct target counter value,

the proof of the credit closure order verifies,

the transaction fees can’t exceed the transferred value,

there’s no fee credit reference or separate fee authorization proof, and

the owner proof satisfies the bill's owner predicate.

Actions Action,erc:

1.

2.
3.
4.

VT Av—-T .Ms.f, — Ms.f, — net value reclaimed
N[T..].D.v < N[T.[].D.v+V

N[T.(].D.€ < 0O

N[T.].D.c < N[T..].D.c +1

Note: The reclaimed credits will be aggregated and removed from the target partition’s
fee bill at the end of the round. The processing fees will be aggregated and added to the
money partition’s fee bill at the end of the round. Reporting of earned fees and payouts
from the partition’s fee bill to the validators will be handled in the usual way.

5.2.7.5 Lock a Fee Credit Record

Transaction order T = {(a,f3,t,l0ckFC, A, M, P, s;) with A = (£,¢), P = (s) and M¢ =
(To, finstr»p), Where:

A.L € Ng, is the new lock status;

e A.c € Ny, is transaction counter value;

e P.s e OCT" is the owner proof.

November 29, 2024 57 /140

preliminary release

Transaction-specific validity condition:

Yiockre(T, S) =
ExtrType(T..) =fcr A S.N[T.] # L A
S.N[T..].D.L =0 A
T.A.L>0 A
T.A.c = S.N[T.].D.c A
T.Mc.f,, < S.N[T.4].D.b A
TMcaug=1 N sp=1LA
VerifyTXAuth(N[T..].D.¢, T,T.P.s) = 1

That is,

e T..identifies an existing fee credit record,

¢ the record is not locked,

e the new status is a “locked” one,

¢ the order contains the correct transaction counter value,

¢ the transaction fee can’t exceed the record balance,

¢ there’s no fee credit reference or separate fee authorization proof, and
e the owner proof satisfies the record’s owner predicate.

Actions Actionjgekrc:

1. N[T..].D.b < N[T.].D.b — Ms.f,
2. N[T.].D.t —T.AL
3. N[T..].D.c < N[T.{].D.c+1

Note: Reporting of earned fees and payouts from the partition’s fee bill to the validators will
be handled in the usual way.

5.2.7.6 Unlock a Fee Credit Record

Transaction order T = (a,f,t,unlockFC, A, M¢, P, s;) with A = (¢), P = (s) and M¢ =
(To, fm-t5,p), Where:

e A.c € Ny, is the transaction counter value;
e P.s € OCT" is the owner proof.

Transaction-specific validity condition:

Yunlockre (T, S) =
ExtrType(T..) = fcr A S.N[T.] # L A
S.N[T.].D.L >0 A
T.A.c=S.N[T.].D.c A
T.Mc.f,, < S.N[T..].D.b A
TMcig=1L N sp=1LA
VerifyTXAuth(N[T..].D.o, T, T.P.s) = 1

November 29, 2024 58 /140

preliminary release

That is,

e T..identifies an existing fee credit record,

the record is locked,

the order contains the correct transaction counter value,

the transaction fee can’t exceed the record balance,

there’s no fee credit reference or separate fee authorization proof, and

the owner proof satisfies the record’s owner predicate.

Actions ACtionunIockFC:

1. N[T.].D.b < N[T..].D.b — Ms.f,
2. N[T.].D.t <0
3. N[T.t].D.c < N[T..].D.c +1

Note: Reporting of earned fees and payouts from the partition’s fee bill to the validators will
be handled in the usual way.

5.2.8 Round initialization and completion

5.2.8.1 Round Initialization: Rlinityeney

1. Delete all bills with zero value and expired lifetime:
1.1 Find all such bills:
I « {t: ExtrType(t) = bill A N[t]# L A N[t].Dv=0 A N[t].D.Tqst < S.n}
1.2 For each known partition identifier g3:
I — I\{S.PDIB].trc}
1.3 For each(€ I: Delltem(:)

5.2.8.2 Round Completion: RCompl e,

1. Perform fee accounting

1.1 For each known partition identifier g3:
1.1.1 Compute v, as the sum of T.A.v — T.Ms.f, over all transFC records T with
T.A.B =B in the current block

1.1.2 Compute v_ as the sum of T.A.T".Av—-T.A.T'.Ms.f, over all reclFC records
T with T.A.T’ .8 = B in the current block

1.1.3 Set N[S.PD|B].trc].D.v < N[S.PD|Bl.tcc].D.v + v, — v_
1.2 Compute v as the sum of the M. f, fields over all transFC and reclFC records
in the current block

1.3 Set N[S.PD|Bmoneyl-trc].D.v < N[S.PDI|Bmoneyl-tec].D.v + v

November 29, 2024 59/140

preliminary release

6 User-Defined Token Partition Type

6.1 Motivation and General Description

[TODO: hierarchical type system]

6.2 Specification

6.2.1 General Parameters

System type identifier: st =2

Partition identifier for the primary public instance: Biken = 2

Type and unit identifier lengths for the primary public instance: tidlen = 1, uidlen = 32

Summary value type V: Ng,

Summary trust base: V = vy

Summary check: y(V, viota) = V = viota

Unit types: U = {ftype = 1, ntype = 2, ftoken = 3, ntoken = 4, fcr = 16} (fungible and
non-fungible token types, fungible and non-fungible tokens, fee credit records).

Unit data D, depends on the unit type u as follows:

® Duype = (sym, nam, ico, t,, s, ¢, @i, ¢4), Where

sym is the symbol (short name) of this token type, up to 16 B in the UTF-8
encoding; note that the symbols are not guaranteed to be unique;

nam is the optional name of this token type, up to 256 B in the UTF-8 encoding;
the names are not guaranteed to be unique either (only the type identifiers are);

ico is the optional icon for this token type; if given, the icon definition consists
of a content type and up to 64 KiB of image data; for compatibility across
clients, PNG and SVG are the preferred image formats; for PNG, the con-
tent type should be ‘image/png’; for SVG, the UTF-8 text encoding should
be used and the content type should be ‘image/svg+xml’ for plain SVG and
‘image/svg+xml; encoding=gzip’ for compressed SVG;

t, € TU{L} identifies the parent type that this type derives from; ¢, = L indicates
there is no parent type;

@s € L is the predicate that controls defining new subtypes of this type;
¢t € L is the predicate that controls minting new tokens of this type;

November 29, 2024 60/140

preliminary release

¢; € L is the clause that all tokens of this type (and of its subtypes) inherit into
their owner predicates;

¢q € L is the clause that all tokens of this type (and of its subtypes) inherit into
their data update predicates;

® Dpioken = (4, nam, uri, dat, ¢, ¢4, €, c), where

t, € I identifies the type of this token;

nam is the optional name of this token, up to 256 B in the UTF-8 encoding; the
purpose of token names is to identify individual tokens within a collection;

uri is the optional URI of an external resource associated with this token; if
given, this must comply with RFC 3986, assuming the UTF-8 text encoding; the
size of this field is not allowed to exceed 4 KiB;

dat is the optional data associated with this token; this can be any data type
supported by the Alphabill platform, including a structure whose fields can in
turn be of any supported data type; the only restriction enforced by the platform
is that the size of this field is not allowed to exceed 64 KiB;

¢ € L is the current owner predicate of this token;
¢q € L is the predicate that controls the updates to the data field;

{ € Ny, is the lock status of the token; allows locking of the token at the beginning
of a multi-step protocol that needs the token to remain unmodified by other
transactions during the protocol execution; £ = 0 means the token is not locked,
any other value means it's locked,;

¢ € Ng, is the transaction counter for this token;

® Diype = (sym,nam, ico, ,,dec, s, g1, ¢;), Where

sym is the symbol (short name) of this token type, up to 16 B in the UTF-8
encoding; note that the symbols are not guaranteed to be unique;

nam is the optional name of this token type, up to 256 B in the UTF-8 encoding;
the names are not guaranteed to be unique either (only the type identifiers are);

ico is the optional icon for this token type; if given, the icon definition consists
of a content type and up to 64 KiB of image data; for compatibility across
clients, PNG and SVG are the preferred image formats; for PNG, the con-
tent type should be ‘image/png’; for SVG, the UTF-8 text encoding should
be used and the content type should be ‘image/svg+xml’ for plain SVG and
‘image/svg+xml; encoding=gzip’ for compressed SVG;

t, € TU {1} identifies the parent type that this type derives from; ¢, = L indicates
there is no parent type;

dec € Ng, 0 < dec < 8 is the number of decimal places to display for values of
tokens of this type;

@s € L is the predicate that controls defining new subtypes of this type;
¢t € L is the predicate that controls minting new tokens of this type;

¢;i € L is the clause that all tokens of this type (and of its subtypes) inherit into
their owner predicates;

d thoken = (Lb V, <P, f, C', t)y Where

t, € Iis the type of this token;

November 29, 2024 61/140

preliminary release

v € Ng, is the value of this token;
¢ € L is the current owner predicate of this token;

{ € Ng, is the lock status of the token; allows locking of the token at the beginning
of a multi-step protocol that needs the token to remain unmodified by other
transactions during the protocol execution; £ = 0 means the token is not locked,
any other value means it’s locked;

— ¢ € Ng, is the transaction counter for this token;

— t € Ng, is the minimum lifetime of this token;

e Di =(b,p,¢,c,t), Wwhere

— b € Ny, is the current balance of this record, in fixed point format with 8 fractional
decimal digits;
¢ € L is the owner predicate of this record;

— { € Ny, is the lock status of the record; £ = 0 means the record is not locked,
any other value means it's locked,;

— ¢ € Ng is transaction counter;
— t € Ng4 is the minimum lifetime of this record.

Summary functions:

e V(D) = D.b for Dy, or 0 otherwise

o Fs(v,ve,vr) =v+vL+ v

o Fg(L,v,vg) = vy + Vg
Transaction types: T = {defFT = 1, defNT = 2, mintFT = 3, mintNT = 4, transFT = 5,
transNT = 6, lockT = 7, unlockT = 8, splitFT = 9, burnFT = 10, joinFT = 11, updateNT =
12, addFC = 16, closeFC = 17, lockFC = 18, unlockFC = 19, setFC = 20, delFC =
21} (define a fungible/non-fungible token type, mint a fungible/non-fungible token, transfer
a fungible/non-fungible token, lock/unlock a token, split a fungible token, burn a fungible

token, join fungible tokens, update a non-fungible token, add fee credit, close fee credit,
lock/unlock a fee credit record, set fee credit, delete fee credit)

6.2.1.1 Notation

The transaction validity conditions in the following sections include evaluating multipart
predicates on multipart inputs. We define the result of evaluating the multipart predicate
n = (m,...,m,) onthe transaction order T and the multipart input s = (sy, ..., s,,) as follows:

(T, s) = (n = m) A VerifyTxAuth(r(, T, s1) A ... A VerifyTxAuth(z,, T, s,,).

6.2.2 Define a Fungible Token Type

Transaction order T = {(a,f,t,defFT, A, Mc¢, P, s¢) with A = (sym, nam, ico, v, dec, ¢s, ¢, ¢i),
P = (sy), where

e A.sym is the short name of the new token type;

e A.nam is the optional full name of the new token type;

e A.ico is the optional icon of the new token type, given as a pair (typ, dat), where

November 29, 2024 62 /140

preliminary release

— typ is the MIME content type identifying an image format, given as a string of up
to 64 B in the UTF-8 encoding;

— dat is a byte string up to 64 KiB in size, representing an image in the format
specified by typ;

A., € TU {1} identifies the parent type that the new type derives from;

A.dec € Ng, 0 < A.dec < 8 is the number of decimal places to display for values of
tokens of the new type;

A.ps € L is the predicate that controls defining subtypes of the new type;

A.¢; € L is the predicate that controls minting tokens of the new type;

A.¢; € L is the clause that all tokens of the new type (and of its subtypes) inherit into
their owner predicates;

e P.s, € (OCT")" is the input to satisfy the subtype predicates of the parent types.

Validity Condition

Woerrr(T,S) =
ExtrType(T..) = ftype A S.N[T.u] =L A
(T.Aup =1L Vv ExtrType(T.A.,) = ftype A S.N[T.A.t,] # L) A
(T\AAup =1 Vv S.N[T.A.r,].D.dec = T.A.dec) A
I(T.A1,)(T,T.P.sy) = 1,

{() ife =1
II(t) = .
II(S.N[c].D..,)IIS.N[c].D.¢s otherwise.

where

That is,

T.. identifies a fungible token type that does not yet exist,

the new type either has no parent or the parent is an existing fungible token type,

the new type either has no parent or displays the token values with the same number
of decimal places as the parent, and

the input s, satisfies the multipart predicate obtained by joining all the subtype predi-
cates along the type inheritance chain.

Actions

1. Addlitem(T.t, 1,(T.A.sym, T .A.nam,T.A.ico,T.A.r,, T.Adec, T.A.ps, T.A.0r, T.A.01))

6.2.3 Define a Non-Fungible Token Type

Transaction order T = (a, B, t,defNT, A, Mc¢, P, s¢) with A = (sym, nam, ico, i, ¢s, ¢, ¢i, ¢q),
P = (sy), where

e A.sym is the short name of the new token type;

e A.nam is the optional full name of the new token type;

November 29, 2024 63/140

preliminary release

A.ico is the optional icon of the new token type, given as a pair (typ, dat), where

— typ is the MIME content type identifying an image format, given as a string of up
to 64 B in the UTF-8 encoding;

— dat is a byte string up to 64 KiB in size, representing an image in the format
specified by typ;
A.i, € Tidentifies the parent type that the new type derives from;
A.@s € L is the predicate that controls defining subtypes of the new type;
A.¢; € L is the predicate that controls minting tokens of the new type;

A.¢; € L is the clause that all tokens of the new type (and of its subtypes) inherit into
their owner predicates;

A.@q € L is the clause that all tokens of the new type (and of its subtypes) inherit into
their data update predicates;

e P.s, € (OCT")* is the input to satisfy the subtype predicates of the parent types.

Validity Condition

Woemt(T,S) =
ExtrType(T.) = ntype A S.N[T.u]= L A
(T.A., =L Vv ExtrType(T.A.t,) = ntype A S.N[T.A.t,] # L) A
I(T.Au,XT,T.P.sy) =1,

H(L):{() ifo= 1

where

II(S.N[t].D..,))IS.N[t].D.¢s otherwise.

That is,

e T..identifies a non-fungible token type that does not yet exist,

¢ the new type either has no parent or the parent is an existing non-fungible token type,
and

e the input s, satisfies the multipart predicate obtained by joining all the subtype predi-
cates along the type inheritance chain.

Actions
1. Additem(T.t, 1,(T.A.sym, T.A.nam,T.A.ico,T.At,, T.A.s, T A1, T.A.p;, T.A.0q))

6.2.4 Mint a Fungible Token
Transaction order T' = (a, B, ¢, mintFT, A, M¢, P, s;) with A = (v, v, ¢,17), P = (), where

A.i,; € Tidentifies the type of the new token;
A.v € Ng, is the value of the new token;
A.p € L is the initial owner predicate of the new token;

A.n € Ngq U {L} is an optional nonce (could be used to ensure multiple tokens with
otherwise identical attibutes get unique identifiers);

P.s; € OCT" is the input to satisfy the token minting predicate of the type.

November 29, 2024 64 /140

preliminary release

Validity Condition
Winer(T,S) =
ExtrType(T..) = ftoken A S.N[T.(] = L A
ExtrUnit(7.c) = PrndSh(ExtrUnit(T.A..,), T.A||T.M¢)) A
ExtrType(T.A.,;) = ftype A S.N[T.A.y,] # L A
TAv>0A
Verify TxAuth(S.N[T..].D.¢., T, T.P.s;) = 1.

That is,

T.. identifies a fungible token that does not yet exist,

the identifier of the new token has been correctly generated,
the type of the new token is an existing fungible token type,

the new token has non-zero value, and

the input s, satisfies the token minting predicate of the type.

Actions
1. Addlitem(T..,(T.A.;,, T.Av,T.A.¢,0,0,T.Mc.Ty))

6.2.5 Mint a Non-Fungible Token

Transaction order T = {(a, 8,t, mintNT, A, M¢), P, s;) with A = (i, nam, uri,dat, ¢, p4,1n), P =
(s;), where

e A., €l identifies the type of the new token;

A.nam is the optional name of the new token;

A.uri is the optional URI of an external resource associated with the new token;

A.dat is the optional data associated with the new token;
A.p € L is the initial owner predicate of the new token;

A.pq € L is the data update predicate of the new token;

A.n € Ngg U {L} is an optional nonce (could be used to ensure multiple tokens with
otherwise identical attibutes get unique identifiers);

e P.s, € OCT" is the input to satisfy the token minting predicate of the type.

Validity Condition
Wninnt (B, S) =
ExtrType(T.t) = ntoken A S.N[T.(] = L A
ExtrUnit(T.c) = PrndSh(ExtrUnit(T.A.,), T.A||T.M¢)) A
ExtrType(T.A.;;) = ntype A S.N[T.A.,,] # L A
VerifyTXAuth(S.N[T.).D.¢y, T, T.P.s,) = 1.

That is,

November 29, 2024 65/140

preliminary release

T.. identifies a non-fungible token that does not yet exist,

the identifier of the new token has been correctly generated,

the type of the new token is an existing non-fungible token type, and

the input s, satisfies the token minting predicate of the type.
Actions
1. Addlitem(T .., (T.A.;, T.A.nam, T.A.uri, T.A.dat, T.A.@, T.A.¢q, 0, 0))

6.2.6 Transfer a Fungible Token
Transaction order T = (a, B, ¢, transFT,A, Mc, P, sy) with A = (¢, v, ¢, ¢), P = (s, 5;), where

A.i; € Tidentifies the type of the token;
e A.v € Ng, is the value to transfer;

A.p € L is the new owner predicate of the token;
e A.c € Ny, is the transaction counter;

P.s € OCT" is the input to satisfy the current owner predicate of the token;

P.s; € (OCT")" is the input to satisfy the owner predicates inherited from the types.

Validity Condition

Wrranser(T,S) =
ExtrType(T..) = ftoken A S.N[T.] # L A
S.N[T.].DL=0A
T.A.; =S.N[T..].D.,; A
T.Av =S.N[T..].D.v A
T.A.c =S.N[T..].D.c A
VerifyTXAuth(S.N[T..].D.o, T,T.P.s) = 1 A
I(S.N[T.().D..,)(T, T.P.s;) = 1,

{() ife=1
II(v) = .
II(S.N[t].D.t,)IIS.N[c].D.¢; otherwise.

where

That is,

e T..identifies an existing fungible token,

¢ the token is not locked,

¢ the token type in the transaction order matches the actual token type,
¢ the value transferred is the value of the token,

¢ the order contains the correct transaction counter value,

e the input s satisfies the token’s current owner predicate, and

e the input s; satisfies the multipart predicate obtained by joining all the inherited owner
predicate clauses along the type inheritance chain.

November 29, 2024 66 /140

preliminary release

Actions

1. N[T.].D.¢ < T.Ap
2. N[T.].D.c < N[T.]].D.c +1

6.2.7 Transfer a Non-Fungible Token
Transaction order T' = (a, B, ¢,transNT, A, Mc, P, s ;(with A = (1, ¢, ¢), P = (s, 5;), where

A.y, € Iidentifies the type of the token;

A.p € L is the new owner predicate of the token;

e A.c € Ny, is the transaction counter;

P.s € OCT" is the input to satisfy the current owner predicate of the token;

P.s; € (OCT")" is the input to satisfy the owner predicates inherited from the types.

Validity Condition

lIJtransNT(Ta S) =
ExtrType(T.t) = ntoken A S.N[T.(] # L A
S.N[T.].D.L=0 A
T.A., = S.N[T.(].D.t; A
TA.c=S.N[T.].D.c A
VerifyTxAuth(S.N[T..].D.o, T,T.P.s) = 1 A
II(S.N[T.].D.,)T, T.P.s;) =1,

{() ifo=1
II(v) = .
H(S.N[L].D.L,,)IIS .N[t].D.¢; otherwise.

where

That is,

T.. identifies an existing non-fungible token,

the token is not locked,

the token type in the transaction order matches the actual token type,

the order contains the correct transaction counter value,

the input s satisfies the token’s current owner predicate, and

the input s; satisfies the multipart predicate obtained by joining all the inherited owner
predicate clauses along the type inheritance chain.

Actions

1. N[T.].D.¢o < T.A.p
2. N[T.t].D.c < N[T.{].D.c+1

November 29, 2024 67 /140

preliminary release

6.2.8 Lock a Token
Transaction order T' = (a, B, ¢, lockT, A, M, P, s¢) with A = (¢, ¢), P = (s), where

o A.l € Ng4 is the new lock status of the token;
e A.c € Ng4 is the transaction counter;

e P.s € OCT" is the input to satisfy the owner predicate of the token.

Validity Condition

‘"PlockT(T’ S) =
(ExtrType(T.c) = ftoken v ExtrType(T.c) = ntoken) A S.N[T.] # L A
S.N[T..].DL =0 A
T.A.L>0 A
T.A.c=S.N[T..].D.c A
VerifyTxAuth(S.N[T..].D.¢, T, T.P.s) = 1.

That is,

T.. identifies an existing fungible or non-fungible token,
the token is not locked,

the new status is a “locked” one,

the order contains the correct transaction counter value, and

the input s satisfies the token’s owner predicate.

Actions

1. N[T.].D.t — T.AL
2. N[T.t].D.c < N[T.{].D.c+1

6.2.9 Unlock a Token
Transaction order T' = (a, B, ¢, unlockT, A, M¢, P, s¢) with A = (¢), P = (s), where

e A.c € Ny, is the transaction counter;

e P.s € OCT" is the input to satisfy the owner predicate of the token.

Validity Condition

Wintockt(T', S) =
(ExtrType(T.c) = ftoken v ExtrType(T..) = ntoken) A S.N[T.] # L A
S.N[T..].D.t >0 A
T.Ac=S.N[T..].D.c A
VerifyTxAuth(S.N[T.(].D.¢, T, T.P.s) = 1.

That is,

November 29, 2024 68 /140

preliminary release

T.. identifies an existing fungible or non-fungible token,

the token is locked,

the order contains the correct transaction counter value, and

the input s satisfies the token’s owner predicate.
Actions

1. N[T.].D.C <0
2. N[T..].D.c < N[T.\].D.c +1

6.2.10 Split a Fungible Token
Transaction order T' = {(a, B, ¢, splitFT, A, M¢, P, s¢) with A = (11, v, ¢, ¢), P = (s, 5;), where

e A., €I identifies the type of the token;

e A.v € Ny, is the amount to transfer;

A.p € L is the initial owner predicate of the new token;

e A.c € Ng4 is the transaction counter;

P.s € OCT" is the input to satisfy the owner predicate of the source token;

P.s; € (OCT")" is the input to satisfy the owner predicates inherited from the types.

Validity Condition

Wepitr (T,) =
ExtrType(T..) = ftoken A S.N[T.] # L A
S.N[T.).D.L=0A
T.A.y; =S.N[T..].D.,; A
TAv>0A
TAv <S.N[T.].D.v A
T.A.c=S.N[T..].D.c A
VerifyTXAuth(S.N[T..].D.o, T,T.P.s) =1 A
II(S.N[T.].D..,(T,T.P.s;) = 1,

{() ifi=1
I1() = .
II(S.N[t].D.t,)IIS.N[t].D.¢; otherwise.

where

That is,

e T..identifies an existing fungible token,
e the token is not locked,

the token type in the transaction order matches the actual token type,

the value to be transferred is non-zero,

the value to be transferred is less than the value of the source token,

November 29, 2024 69 /140

preliminary release

e the order contains the correct transaction counter value,
e the input s satisfies the token’s current owner predicate, and

o the input s; satisfies the multipart predicate obtained by joining all the inherited owner
predicate clauses along the type inheritance chain.

Actions

1. / « NodelD(ftoken, PrndSh(ExtrUnit(T.c), T.i||T.A||T.Mc))
2. Addlitem(/,(T.A.D..;,,T.A.v,T.A.¢,0,0,0))

3. N[T.].Dv < N[T.].Dv—-T.Av

4. N[T.t].D.c < N[T.t].D.c+1

Targets
For splitFT transaction T, targets(T) = {T..,/}.

6.2.11 Join Fungible Tokens

Joining of fungible tokens collects the value represented by several tokens of the same
type into one token. The process consists of several steps:

1. A target token is selected to receive the value of the joined tokens. The target token
may be any existing token, but it must not be changed by other transactions during
the execution of the joining protocol. To ensure that, the target token should be locked
using a lockT transaction.

2. The source tokens are “burned” (deleted) using burnFT transactions. To prevent
replay attacks, each of the burnFT transactions must identify the selected target token
and its current state.

3. The value of the source tokens is added to the target token using a joinFT transaction.
As this transaction completes the joining process, it automatically unlocks the target
token.

6.2.11.1 Burning Step
Transaction order T' = («, B,¢,burnFT,A, Mc, P, s) with A = (¢, v,/', ¢’,), P = (s, 5;), where

e A., €I identifies the type of the token to burn;

e A.v € Ny, is the value to burn; note that for the proof of burn to be usable in a following
joinFT operation, the resulting value of the target token must not overflow Ngy;

A.’ € 1is the identifier of the target token;

A.c’ € Ng, is the transaction counter of the target token;

e A.c € Ny, is the transaction counter of the source token;

P.s € OCT" is the input to satisfy the owner predicate of the source token;

P.s; € (OCT")" is the input to satisfy the owner predicates inherited from the types.

November 29, 2024 70/140

preliminary release

Validity Condition

Yournet(T, S) =
ExtrType(T..) = ftoken A S.N[T.] # L A
S.N[T.].DL=0A
TA., =S.N[T.].D.i, A
T.Av =S.N[T..].D.v A
T.A.c = S.N[T..].D.c A
VerifyTXAuth(S.N[T..].D.o, T,T.P.s) = 1 A
I(S.N[T.]).D..,(T,T.P.s;) = 1,

{() ifo=1
() = .
H(S.N[L].D.Lp)”S .N[t].D.¢; otherwise.

where

That is,

e T..identifies an existing fungible token,

the token is not locked,

the type of token to burn matches the actual type of the token,

the value to be burned is the value of the token,

the order contains the correct transaction counter value,

the input s satisfies the token’s current owner predicate, and

the input s; satisfies the multipart predicate obtained by joining all the inherited owner
predicate clauses along the type inheritance chain.

Actions

1. N[T.\].D.v < 0
2. N[T.].D.o <0
3. N[T..].D.c < N[T.\].D.c+1

6.2.11.2 Joining Step

Transaction order T = (a,f,t,joinFT, A, Mc, P, sy) with A = ((T{,11}),...,(T,,,IL)), P =
(s, s;), where

e AT{,...,A.T, € TR are records of the transactions that burned the source tokens;
o AII,,...,AIl, € XP are the transaction execution proofs of A.T7,...,A.T, ;

e P.s € OCT" is the input to satisfy the owner predicate of the target token;

P.s; € (OCT")" is the input to satisfy the owner predicates inherited from the types.

November 29, 2024 71/140

preliminary release

Validity Condition

Wioinrr (T, S) =
ExtrType(T..) = ftoken AS.N[T.] # L A
TAT|.a=...=TAT,a=T.aA
TAT,B=...=TAT,B=Tp A
TAT{u<...<TAT, LA
TAT|t=...=TAT,.T =burnFT A
TAT{Ay=...=T.AT) Ay, =S.N[Tu]l.D.t, A
TAT AL =...=TAT, Al =Tu A
TAT{Ac =...=T.AT, Ac =S.N[T.u].D.c A
VerifyTxProof(T.A.I1|, T.A.T|,S.T,S PDIT.A.T|.a]) A

VAN

VerifyTxProof(T.A.IT,, T.A.T,,S.T,S.PDOIT.A.T, .a]) A
S.N[T.4.Dv+TAT|Av+...+TAT, Av<2% A
Verify TXAuth(S.N[T..].D.¢, T, T.P.s) = 1 A
II(S.N[T.(].D..,)T,T.P.s;) = 1,

where
if L
() = O ,
II(S.N[t].D.t,)IIS.N[t].D.g; otherwise.

That is,

e T..identifies an existing fungible token,

e the transactions 77, ..., T, were in this network,

e the transactions T7,..., T, were in this partition,

e burning transaction orders are listed in strictly increasing order of token identifiers (in
particular, this ensures that no source token can be included multiple times),

e the transactions 771, ..., T, were burning transactions,

e the types of the burned source tokens match the type of target token,

o the source tokens were burned to join them to the target token,

¢ the burning transactions contain correct target transaction counter values,
¢ the burning transactions were valid transactions,

¢ the value of the joined token would not overflow Ng4,

¢ the input s satisfies the token’s current owner predicate, and

e the input s; satisfies the multipart predicate obtained by joining all the inherited owner
predicate clauses along the type inheritance chain.

Actions

1. N[Tt].D.v < N[Tu].Dv+TAT Av+...+TAT, Av
2. N[T.].D.t <0
3. N[T.t].D.c < N[T..].D.c +1

November 29, 2024 72/140

preliminary release

6.2.12 Update a Non-Fungible Token
Transaction order T' = {(«, B, ¢, updateNT, A, M¢, P, s¢) with A = (dat, c), P = (s, s;), where

A.dat is the new data to replace the data currently associated with the token;

e A.c € Ny, is the transaction counter;

P.s € OCT" is the input to satisfy token’s data update predicate;

P.s; € (OCT")* is the input to satisfy the data update predicates inherited from the
types.

Validity Condition

Wipdatent(T', S) =
ExtrType(T.t) = ntoken A S.N[T.(] # L A
S.N[T.].DL=0A
T.A.c =S.N[T.t].D.c A
VerifyTxAuth(S.N[T.).D.¢,, T, T.P.s) = 1 A
II(S.N[T.].D..,(T,T.P.s;) = 1,

where

{() ifi=1
IIQ) = .
II(S.N[t].D..,))IS.N[t].D.¢g otherwise.

That is,

¢ identifies an existing non-fungible token,

the token is not locked,

the order contains the correct transaction counter value,

the input s satisfies the token’s data update predicate, and

the input s; satisfies the multipart predicate obtained by joining all the inherited data
update predicate clauses along the type inheritance chain.

Actions

1. N[T.].D.dat « T.A.dat
2. N[T.\].D.c < N[T.(].D.c+1

6.2.13 Fee Credit Handling

The addFC (add fee credit), closeFC (close fee credit), lockFC (lock fee credit record), and
unlockFC (unlock fee credit record) transactions are handled the same way as in the money
partition.

November 29, 2024 73/140

preliminary release

6.2.14 Round initialization and completion

6.2.14.1 Round Initialization: Rlinitigken

1. Delete all fungible tokens with zero value and expired lifetime:

1.1 Find all such tokens:
I « {¢: ExtrType(t) = ftoken A N[t]# L A N[t].D.v=0 A N[t].D.t; < S.n}

1.2 For each € 7: Delltem(v)

6.2.14.2 Round Completion: RCompl,yen

No transaction system specific completion steps.

6.3 Permissioned Mode

For some use cases, it may be desirable to support running a dedicated instance of the
user-defined token partition in a permissioned mode where only pre-authorized parties can
send transaction orders. In validator implementations that support such a permissioned
mode, it is activated by defining an administrative authorization predicate ¢,qm in the con-
figuration of the partition. With the predicate defined (¢agm # L), the partition will not
accept the usual addFC, closeFC, lockFC, unlockFC transactions and will instead accept
the setFC and delFC transactions defined below. The purpose of the setFC transaction is
to permit a client to send transaction orders to the partition and the purpose of the delFC
transaction is to revoke the permission.

In such a permissioned partition, it may additionally be desirable to turn off the usual fee
accounting mechanism and handle validator remuneration in some other way. Even in the
fee-less mode, regular transactions will still need to reference a valid fee credit record and
contain a “fee authorization proof” for the purpose of authenticating the transactions as
coming from authorized clients; also, the cost of executing a transaction will still be tracked,
to prevent the evaluation of a malformed predicate from locking up validators; however,
the transaction execution cost will not be subtracted from the balance of the fee credit
record; this allows the presence of a fee credit record with a nominal balance to serve as
an authorization for unlimited number of transactions, until the record is explicitly deleted
to revoke the access.

Note that the fee-less mode is only an option for permissioned partition instances; public
permission-less partitions are not intended to be operated in fee-less mode.

6.3.1 Set Fee Credit

Transaction order T = {«,B,t,etFC, A, Mc, P, s¢), with A = (v, ¢, ¢), P = (), where:
1. A.v € Ng4 is the credit amount;
2. A.p € L is the target fee credit record owner predicate;

3. A.c € Ng, is the transaction counter;

4. P.s € OCT" is the authorization proof.

November 29, 2024 747140

preliminary release

Validity Condition

Wsetrc(T,S) =

ExtrType(T..) = fcr A (
(S.N[T.t] =L A ExtrUnit(T.c) = PrndSh(ExtrUnit(T.c), T.A.¢||P.Mc.Ty)) V
(S.N[Tu]# L AN T.Ap=S.N[T.l].p)

) A (
(SN[Ti]=L ANTAc=1)V
(S.N[Tu]l]# L AN TA.c=S.N[T..].D.c)

) A

TMcag=1LANsp=1A

VerifyTxAuth(wagm, T, T.P.s)

That is,

e T..identifies a fee credit record (either new or pre-existing),

if the target does not exist, the identifier must agree with the owner predicate,

if the target exists, the owner predicate must match,

the transaction order contains correct target counter value,

there’s no fee credit reference or separate fee authorization proof, and

the transaction has been correctly authorized.

Actions

1. if S.N[T.] = L:
1.1 AddCredit(T.., T.Av, T.A.p, PMc.Ty)
2. else:

2.1 IncrCredit(T.., T.A.v, PMc.Ty)

Note: Since the setFC transactions are issued by the owner of the partition, the fees are
not subtracted from the credit amount (in contrast with the addFC transactions). If fees
have not been disabled, then it is expected that reporting of fees earned for processing
setFC transactions is handled in the usual way, but settlement is out of band.

6.3.2 Delete Fee Credit
Transaction order T' = («,B,¢,delFC, A, Mc, P, s¢), with A = (c), P = (s), where:

1. A.c € Ny, is the transaction counter;

2. P.s € OCT" is the authorization proof.

November 29, 2024 75/140

preliminary release

Validity Condition
Waerc(T,5) =
ExtrType(T..) =fcr A S.N[T.u]# L A
T.Ac=S.N[T.t].c A
TMcag=1 N sp=1LA
VerifyTxAuth(wagm, T, T.P.s) = 1

That is,

T.. identifies an existing fee credit record,

the transaction order contains correct target counter value,

there’s no fee credit reference or separate fee authorization proof, and

the transaction has been correctly authorized.
Actions

1. N[T.].D.b <0

2. N[T.]l.D.p <0

3. N[T.].D.c < N[T.\].D.c+1
Note: Since the delFC transactions are issued by the owner of the partition, the fees are
not subtracted from the credit amount (in contrast with the closeFC transactions). If fees

have not been disabled, then it is expected that reporting of fees earned for processing
delFC transactions is handled in the usual way, but settlement is out of band.

November 29, 2024 76 /140

preliminary release

7 Alphabill Distributed Machine

7.1 Background

7.1.1 Definitions

Block is a set of transactions, grouped together for mostly efficiency reasons. At the shard
level, a block is an ordered set of transactions + proofs: UC and shard certificate. Root
Partition does not produce an explicit blockchain — its certificates are persisted as proofs
within the shard ledgers.

UC is Unicity Certificate.

We call UC a repeat UC if it has incremented round number for a particular shard, but the
certified hash has not changed compared to the UC of the previous round.

All shard validators and Root Partition validators operate in rounds. Roughly, a round is
an attempt to produce a block.

A block extends another block by including its cryptographic hash as the hash of previous
block.

The validators of a shard are synchronized based on input from the Root Partition. There
are some fixed time-outs.

System has one Root Partition and an arbitrary number of partitions, which may be split
into arbitrary number of shards.

Within a shard, there are k validators with identifier v, of which f might be faulty. For the
Root Partition k > 3f. For a shard o, kg, > 2f. We assume that all faulty validators may
be controlled by a coordinated, non-adaptive adversary. We assume trusted setup (Gen-
esis) and authenticated data links (signed messages). We assume partially synchronous
communication model where after unknown time GST message delivery time is upper-
bounded by known A. We assume that in every shard, at least one non-faulty validator is
able to persist its state.

A signature is denoted as s. Signed message with message name name is denoted as
(name | a, b, c; s). Array of message fields is denoted as {f}.

Clients send transaction (ix) orders (txo).

7.1.2 Scope

Implementation details of Root Partition’s atomic broadcast primitive (implementing the pro-
tocol Ordering) are not given. This is a modular component. Only safety-critical validation

November 29, 2024 777140

preliminary release

rules are provided.

7.1.3 Repeating Notation

n, — round number of the Root Partition

ng — round number of shard o of partition g

ks~ — number of validators in shard o of partition 3, ks, = [V

v — validator identifier, unique within the Alphabill System instance; set of a shard’s
validators is V = {Vi}ie(1...x)

v, < LEADERFUNC(-) — leader identifier for this block production attempt

h — state tree root hash

h’ — previous state tree root hash

ensure(...) — function modeled after the Solidity language — if its argument evaluates to
true then nothing happens; if it evaluates to false then execution stops and function returns
0. Unlike Solidity, should be complemented with returning and logging informative errors.
Mostly used in message handlers for input validation.

function(a,b < c) — default value of function arguments, like in Python language. If 2nd
argument is not specified by caller then parameter b obtains the value of expression c.

7.2 Partitions and Shards

7.2.1 Timing

A Shard is synchronized using Input Records in returned UCs. For a shard, a UC can have
the following options:

1. IR has not changed. Our shard can ignore this UC.

2. UC certifies an input from our shard, this input has never been certified before, and
round number is incremented. This UC finalizes a block and starts a new round.

3. Round number is incremented, but state root hash remains the same (repeat UC).
This UC starts another consensus attempt extending the same state as previous
(likely failed) one.

4. UC is newer, certifying a future state. Indicates to a validator that it is behind the
others and must roll back the pending proposal and initiate recovery.

If the latest UC certifies a state of this shard, then the certification response delivering UC
determines the leader and starts a new round. While accepting incoming transactions, the
leader starts assembling his next block proposal, extending the latest block with a valid UC.

When timer t1 runs out the leader stops accepting new transactions, finishes state updates
and broadcasts a block proposal to followers and then sends Certification Request to the
Root Partition. See Figure 15.

Root Partition has a timer t2 for every shard within every partition; it is reset when a valid
UC for this shard is issued. If this timer has run out, then a repeat UC is issued with
incremented round number. This initiates a new consensus attempt for the shard. New
round is executed with a different leader. Nodes can determine which UC is the latest
based on round number. A block proposal, generated by the leader, includes a UC and this

November 29, 2024 78/140

preliminary release

UC must point to this leader. Block is finalized when its UC is embedded into the block.
The retry mechanism is illustrated by Fig. 16.

Valid H tick Valid

uc uc
Root
Chain 1 uc
Transaction
Leader —
Proposal
Follower1
ollowe Cert Request
Follower2 Block
Client >
Time
Figure 15. Successful Shard Round
Valid . Not related
U t1 tick uc Repeat UC t1 tick
t2 tick
t2
t2
Root |
Chain 1 |

Node1

Node2

Node3

>

Client >
Time

Figure 16. Shard Round attempt which did not produce a valid UC for this shard

7.2.2 Configuration and State
Configuration (managed by the Coordination Process) of every validator includes:
e Network ldentifier ().

Partition Identifier (5).

Shard Identifier (o); present for multi-shard partitions.

Validator Identifier (v). There are ks, validators in shard o of partition .

Timeout value t1: after a validator sees a UC which appoints a leader, the leader
waits for t1 time units before stopping accepting new transaction orders and creating
a block proposal.

Communication layer:

e secret key used to sign messages

¢ related public key; known to other validators and the Root Partition
e public keys of other validators within the shard

e communication addresses of other validators within the shard

November 29, 2024 79/140

preliminary release

communication addresses of the Root Partition validators

Data layer:

Unicity Trust Base (7)

other partition defining parameters; refer to Alphabill Platform Specification, State of
a Shard.

Variables:

v;. Current round leader’s identifier; NuLL if not known
buf: buffer with pending transaction orders
N: State Tree

cp: State Tree checkpoint, helps the State Tree to roll back to previously certified
state if a state extending attempt fails. Checkpoints can be released when a following
block gets finalized.

luc: latest UC. Importantly, this structure encapsulates the state hash of the last
certified state, to be extended by the block production attempt.

Ite: latest Technical Record, certified by luc. Carries the required round number,
leader identifier, epoch of the block production attempt.

log: log of verified and executed (but not final) transactions; respective changes in
State Tree can be rolled back by reverting it to checkpoint cp.

pr: Pending Certification Request waiting for UC; includes state tree hash and ap-
plied transactions and round number as the time reference used for transaction vali-
dation. We are avoiding situation where there can be multiple pending requests and
speculative validation; fresh UC invalidates all pending requests.

There may be multiple parallel pending requests in future extensions.

B: the blockchain; append-only persistent shared ledger.

The variables are handled via state transitions like this:

1.

Initial state. State tree is certified with ‘luc’; log and pr are empty; cp points to the
current state.

. After applying any transaction(s): There are changes in the state tree; executed

transactions are recorded in proposal (that is, cp is the starting point and N and log
are updated in sync). Processing of transactions continues.

Waiting for UC. This state is reached on t1 click, after sending a BlockProposalMsg
message (if being the leader) and sending a Certification Request. There are
changes in the state tree on top of snapshot cp; executed transactions were recorded
in log; Now, root hash of the state tree and respective log are saved in pr, which ex-
tends luc. pr must be preserved as long as it is possible that it gets certified by a UC.
No new transactions are processed in this state.

. After receiving a CReS message with new UC:

e UC certifies pr: block is finalized and added to 8. OK to clear.

e UC is ‘repeat UC’: state is rolled back to cp; we assume simplified case that
consensus for prev. request is not possible any more and clean pr.

November 29, 2024 80/140

preliminary release

Algorithm 1 State and Initialization

Constants:

a: Network Identifier

B: Partition Identifier

o: Shard Identifier

v: Node |dentifier

ks -: number of validators in the shard o of partition 5
7. Unicity Trust Base, may evolve

Variables:

v; < NuLL: leader validator identifier of the current round; NuLL if not known
N « {}: State Tree

cp « L: State Tree Checkpoint

luc < NuLL: latest valid UC

Ite — NuLL: latest technical record sent with latest UC

> <round number to be certified> = Ilte.n
> <last certified hash> = luc.IR.h

buf « {}: input transaction orders buffer

log < {}: executed transaction log for proposal creation

pr < NuLL: pending proposal corresponding to a CR request waiting for UC

sr: technical data payload, sent with Certification Request. See Statistical Record
B: blockchain

function sTART_NEW_ROUND(uc, te)
ensure(VerryUNicitYCerT(uc, 7))
ensure(uc.h; = h(te))
ensure(te.n > luc.IR.n)

ensure(uc.IR.IW = luc.IR.h) > Double-checking

cp < CHECKPOINT()
RINiT()

log < {}

pr<{}

v, « te.v

luc < uc, lte « te
RESET_TIMER(t1)

if v, = v then > leader
PROCESS(bu f) > process for no longer than until t1 tick
buf — {}
else > follower
if senp_INPuTFORWARDMSG(/, buf) then
buf « {} > Clean buffer on successful connection
end if

end if
end function

function LEADERFUNC(uc)

return {v; | i < integer(H(uc)) mod kg, + 1} > Simplest example

end function

November 29, 2024

81/140

preliminary release

e UC certifies any round newer than the latest known UC: rollback and recovery
(independent state, consuming blocks until N is up-to-date with UC).

5. Loop to 1.

Please refer to Algorithm 1 for initialization.

7.2.3 Subcomponents

1 Root Chain 1
v 1
‘ fBIockCertiﬁcation
Certificate
uc
Request

A
Leader Follower

! 1
1
! 1
1 Processing an Unicity Pending Block 1 :
: [Certificate starts] Proposal el (P 1 '
1
1 H . 1
"""" A BlockProposal | Processing a Block
r)‘ Send Proposal L 1 g Proposal

[.
1 iRollback/: | Finalizing
I :Recovery: | aBlock
[I y

LedgerRepIicjation

Ledger !
Replication

Input

Handling <

Ledger utForwarg Input
Replication Handling
A

__

1
1
1
.............. : State .
' Block ® . 1
1 Proposal \ 1
1 (Next) New Round | :
1
1 Validate and Execute : :
1 ' ,
1
' Certified ' !
: Block _1 New Round : !
1 | :
1 Transaction | 1
! Ledger Buffer ! :
1
- :
p d
T
1
1

Transaction
Order
tTransaction

Figure 17. Data Flow of the Shard Leader Node

7.2.3.1 Input Handling

Input Handling prioritizes latency (fast finality). It is optimized for the case where there is
enough processing capacity and block space available and transaction orders do not have
to be queued.

All validators accept transaction orders from clients. It is expected, that clients send trans-
action orders to many validators, as some may be byzantine. We assume that clients
send transaction orders to the right shard; transaction orders sent to wrong shard can be
discarded. Optionally, implement QoS / overload protection. There is no guarantee of
execution — the validators may drop transaction orders to protect the system availability,
or when working close to maximum capacity. Synchronized clients may send transaction
orders directly to the expected leader.

Shard validators forward transaction orders, as they arrive, to respective shard leaders
(node producing the next block proposal); while observing time-outs and discarding expired

November 29, 2024 82/140

preliminary release

transaction orders. There can be a light-weight partial validation, referred as sanity check,
before continuing with the processing. If the leader is not known, or rejects messages,
then keep transaction orders in a buffer and try again when the next leader is known and
accepts transaction orders. If the validator is the current leader, then he processes available
transaction orders immediately. At the moment when a leader can not include transactions
into a proposal anymore, or have collected enough transactions to fill a block, it starts
rejecting incoming transaction orders from other validators.

A validator should retain a transaction order if accepted from a client or other validator; until
it is either expired or included into a finalized block. A validator may forget a transaction
order if accepted by another validator. A validator should not forward a transaction order to
a distinct validator more than once.

Validators may limit the number of times a transaction order is forwarded.

Please refer to Algorithm 2 for an example without optional functionality.

7.2.3.2 Block Proposal

Summary: On clock tick, stop immediate validation and execution of incoming Transaction
Orders. Validate and execute transaction orders from the Transaction Buffer, updating the
State Tree (N) and log for proposal creation. Executed transactions from log go into Block
Proposal, in the exactly same order they were validated and executed. Broadcast Block
Proposal to Follower Nodes. Create and send Uniqueness Certificate Request, retaining
necessary state in a Pending Block Proposal (pr) data structure.

A block must extend a previously certified block. If a party approves a block proposal, then
it also approves the entire history. This ensures safety of the protocol.

Pending Block Proposal (pr) must be stored in durable way before Certification Request
can be sent, by e.g. writing it to persistent storage. Losing all copies of pending block
proposals, while obtaining a UC for this block, would be an unrecoverable error.

Please refer to Algorithm 3 for detalils.

Note that a block can be without any transactions; however, this does not necessarily imply
W = h, as system-initiated “housekeeping” actions may have changed the state.

7.2.3.3 Validation and Execution

Sanity checking of transaction orders is quick and lightweight validation, with the main
goal of protecting system resources by early detection of obvious garbage. All transaction
orders will be fully verified later before actual execution. Thoroughness of sanity checking
is a tuning parameter.

Validating transaction orders is performing their full verification, according to Alphabill Plat-
form Specification, section Valid Transaction Orders, and performing transaction system
specific additional checks. The transactions must appear in the proposal in the same or-
der. Transactions without interdependencies (i.e., affecting distinct units) can be executed
in parallel. Invalid transactions are not executed and not included into produced proposal.
There may be a receipt instead to justify the deduction of fees.

November 29, 2024 83/140

preliminary release

Algorithm 2 Input Handling

upon message <TransactionMsg | 7> do
if sanity_cHeck(7T') then

if v, = v then > this process is the leader
PROCESS({7'}) > Beware of parallel execution
else if v; # NuLL then > someone else is the leader
if —senp_INpuTFORWARDMSG(v;, T) then > v, is the recipient
buf < bufuT > Store on failure
end if
else > Buffer transactions until leader is known
buf < bufuT
end if
end if
end upon

upon message <InputForwardMsg | zxs> do
if v, = v then > this process is the leader
defer ProcEss(zxs)
return “accepted”
else
return “reject”
end if
end upon

on event next_leader_elected do
PRUNE_EXPIRED (bu f)

if v, = v then > this process is the leader
PROCESS(buf) > Beware of parallel execution
else
if senp_INPUTFORWARDMSG(V;, buf) then > v, is the recipient
buf « {} > Forget on successful send
> ... or keep in “forwarded” buffer and use when becoming the leader
end if
end if
end on

Algorithm 3 Producing a Block Proposal
on event t1 do

if v, = v then > this validator is the leader
v; < NuLL
RCowmpL() > Transaction processing must have stopped by now
sr < PRrobuceSTaTisTICS()
seND_BLockProrosaLMsa(a, B, o, v, luc, Ite, log, sr) > Sign and Broadcast
po_CERT_REQ(log, v, sr)

end if

v; < NuLL > leader stops accepting new txs

end on

November 29, 2024 84 /140

preliminary release

Algorithm 4 Producing a Certification Request

function po_cert_REeQ(txs, v, sr)
W « lucIR.h,n < lte.n, e < lte.e, t < luc.C".t
h < StatER0OT(N), V <« DATASUMMARY(n, t, N, log), fz « TotaLFEes(n, t, N, log)
pr <« (n,e, W', h,t,v,log, sr) > Pending Block Proposal
b « ((B, 0, luc.IR.hg,v)); txs; NuLL) > temporary block
hp < BLOCK_HASH(D)
if STORE_IN_DURABLE_WAY(pr) then
IR « (n,e,h’,h,V,t, hg, fp)
seno_CR(a, B, 0, v, IR, sr) > Sign and send
else
> Do nothing as the current node can not guarantee data availability
> The round may get finalized though thanks to other shard validators
end if
end function
function po_CERT_REQ_AGAINST(sr) > Voting against the proposal
W «— lucIR.h,n « lte.n, e < lte.e, t < luc.IR.C".t
he—0gVel, fp<0
hB — OH
IR « (n,e,h,h,V,t, hg, fg)
seno_CR(a, B, 0, v, IR, sr) > Sign and send
end function

Algorithm 5 Validate and Execute Transaction Orders

function sanity_cHeck(T'; t « Ite.n) > Transactions will be fully validated later
return Ta=aATB=BAT.o=0ANT.Mc.Ty >t
end function

function VALDATE(T ; n < Ite.n,t <« luc.C".t)
> Omitted, see Platform Specification, Valid Transaction Orders
end function

function prRocess(zxs) > Should be implemented as processing queue
forall T € txs do
if vaLIDATE(T) then

EXECUTE(N, T') > Gan be executed in parallel if non-related units
log — loguT > Retaining the ordering of input
end if
end for

end function

The expiration of Transaction Orders is checked relative to shard round number. Validation
context includes also the time value r obtained from previous UC and to be recorded as
current block’s UC.IR.t.

Refer to Algorithm 5 for details. Note that fee processing is omitted for brevity.

November 29, 2024 85/140

preliminary release

7.2.3.4 Processing an Unicity Certificate and Finalizing a Block
Summary: On receiving a UG, block is finalized and a new round is started.

More specifically,

1. UC is verified cryptographically according to the Framework Specification. Partition
and shard identifiers are checked.

2. The time-stamp in UC is checked for sanity: it must not “jump around” and it must
reasonably match the local time if it can be reliably determined. UC with a suspicious
time-stamp must be logged, and processing continues because rejecting a UC may
end with a deadlock of the shard.

3. UC consistency is checked:
uc.IR.h = uc.IR.h = uc.IR.hg = Oy

4. UC is checked for equivocation, that is, for arbitrary uc and uc’, the following must
hold:
uc.IR.n = uc’.IR.n = uc.IR = uc’.IR
ucIR.W = uc’ IR.W = ucIR.h = uc’ IR.h
VucIRK =ucIRhV uc' IRN = uc’ .IR.h
ucIR.h = uc’.IR.h = ucIR.I = uc’ IR.N
VucIR.W = ucIR.hV uc' IR.N = uc’ IR.h
ucIR.h = uc’ IR.h = uc.IR.hg = uc’ .IR.hg
Vuc.IR.hg = 0y V uc’ .IR.hg = Oy
uc.IR.hg = uc’ IR.hg # Oy = uc.IR = uc’.IR
ucIRn =uc’ IRn+ 1= uc.IR.h = uc' .IR.h
ucIRn < uc’ IRn = uc.C'.n < uc’'.C'.n
On failing any of these checks, an equivocation proof must be logged with all neces-
sary evidence.
5. UC round number and epoch number can not decrement.

6. On unexpected case where there is no pending block proposal, recovery is initiated,
unless the state is already up-to-date with the UC.

7. Alternatively, if UC certifies the pending block proposal then block is finalized.

8. Alternatively, if UC certifies the block which pending proposal tried to extend (‘repeat
UC’) then state is rolled back to the previous state.

9. Alternatively, recovery is initiated, after rollback. Note that recovery may end up with
newer last known UC than the one being processed.

10. Finally, on valid UC (validation reached the 3 alternatives above), a new round is
started.

Please refer to Algorithm 6 for details. Block Finalization is presented in Algorithm 8.
On arbitrary timeout / lost connection: re-establish connection to the Root Partition.

If a block can not be saved and made available during the finalization, then the round must
be not closed. This ensures that a) the block can be restored based on saved proposal and
UC during the recovery process, and b) the node can not extend the unsaved block.

November 29, 2024 86 /140

preliminary release

Algorithm 6 Processing a received Unicity Certificate

upon message <CReS | @,3, 0, te; UC> do
ensure(VerryUNicityCerT(uc, 7))
ensure(H(te) = UC.h,)
if cor_New_uc(UC) then
START_NEW_ROUND(UC, te)
end if
end upon
function cot_New_uc(uc)
ensure(uc.IR # luc.IR) > ignore UC certifying the same
ensure(uc.C'.a = @)
ensure(uc.C'" B = f3)
if =CHeckSANITY(uc.C".t, uc.C".n, GetUTCDateTime()) then
Loa(uc) > rejecting a UC with strange time would break the shard
end if
ensure(NON_EQUIVOCATING_ucs(uc, luc))
ensure(uc.IR.n > luc.IR.n) > check late to catch equivocation
if pr = NuLL then > no pending Certification Request
if uc.IR.h # StatreRoot(N) then
RECOVERY(uc)
end if
else
if uc.IR.h = pr.h AN uc.IR.W = pr.h’ A uc.IR.hg = pr.hp then
FINALIZE_ BLOCK(pr, uc)
else if uc.IR.h = pr.h’ then
ReverT(N, cp)
else
ReverT(N, cp)
RECOVERY(1C)
end if
end if
return 1
end function

7.2.3.5 Processing a Block Proposal

Summary: Upon receiving a BlockProposalMsg message, create a rollback checkpoint
and then validate the signature and header fields, execute transaction orders from the
proposal and updating the State Tree (N). Executed transactions go into Block Proposal.
Create and send Uniqueness Certificate Request message, and retain a Pending Block
Proposal data structure.

This procedure is performed by the non-leader validators. There are following steps (See
Fig. 18):

1. Block proposal is checked: valid signature, correct partition and shard identifier, valid
UC, the UC must be not older than the latest known by the validator. Sender must be
the leader for the round started by included UC and match the leader identifier field.

November 29, 2024 87 /140

preliminary release

Algorithm 7 Checking two UC-s for equivocation

function NoN_EQuIvOcATING_ucs(uc, uc’)
ensure(uc.IR.n > uc’.IR.n) > to simplify, assume that uc is not older than uc’
ensure(uc.C".n, > luc.C".n,)
if uc.IR.n = uc’.IR.n then

ensure(uc.IR = uc’.IR) > on all failures log uc and uc’ as proof
end if
if uc.IR.h = uc.IR.n’ then > state does not change
ensure(uc.IR.hp = Og) > ...then block is empty
else > state changes
if uc.IR.W = uc’ IR.IN A uc’ IR.I # uc’.IR.h then
ensure(uc.IR.h = uc’.IR.h) > a hash can be extended only with one hash
end if
if uc.IR.h = uc’.IR.h then > ...and vice versa
ensure(uc.IR.W = uc’ .IR.I)
end if

if uc.IR.hg # O A uc.IR.hg = uc’ .IR.hp then
ensure(uc.IR = uc’.IR) » non-empty block hash can only repeat in repeat UC
end if
end if
if uc.IR.n = uc’.IR.n + 1 then
ensure(uc.IR.IW = uc’.IR.h)
end if
return 1
end function

Algorithm 8 Finalizing a Block

function FiINALIZE_BLOCK(pr, uc)

B «— (B, 0, luc.IR.hg, pr.l, pr.txs, uc)

ensure(BLOCK_HASH(B) = uc.IR.hg)

B—BUB > Adding a new block to shard’s blockchain
end function

2. If included UC is newer than latest UC then the new UC is processed; this rolls
back possible pending change in state tree. If new UC is ‘repeat UC’ then update is
reasonably fast; if recovery is necessary then likely it takes some time and there is
no reason to finish the processing of current proposal.

3. If the state tree root is not equal to one extended by the processed proposal then
processing is aborted and negative vote is delivered.

4. All transaction orders in proposal are validated; on encountering an invalid transac-
tion order the processing is aborted and negative vote is delivered.

5. Transaction orders are executed by applying them to the state.
6. Pending certificate request data structure is created and persisted.

7. Certificate Request query (CR) is assembled and sent to the Root Partition—that is,
positive vote for the proposal.

November 29, 2024 88/140

preliminary release

Ledger
Replication

Replication

1 Root Chain 1
I, 1
fBIockCertiﬁcation
uc Certificate
Request
A
Follower Leader
P et f - mEmEmEmmmme- i
1 ' : 1
1 Processing an Unicity Pending Block Send P1 1 . 1
! Certificate starts Proposal 1 | !
! : State | 1 . !
- Yoo, ¥ A ' ' !
- Beefi 1 f
1 ERollback /E Finalising Block Validate and Execute . ' 1
1 :Recovery: | aBlock Proposal f . 1
) e ¢ - A A 1 ' !
1] 1 ! 1
1 i BlockProposal 1
1 New Round Prgcessmglj at Brltock < T P Send Proposal 1
' roposal starts . 1 '
1 ' ! 1
1 ' ! 1
1 1 ! 1
1 Certified 1 : 1
! Block 1 . 1
1 1 1
1 1 : 1
! Ledger Transaction | 1 . :
: 9 Buffer ! 1 '
1 1 ;
1

1

1

1

1

'
Input InputForward | Input
Handlin T [d Handlin,
9 : ' g
1

A

__

Transaction
Order
tTransaction

! Client !

Figure 18. Data Flow of a non-leader shard validator

As an optimization, it is possible to vote against a proposal by sending a negative vote,
where proposed state’s hash is Og. This helps the Root Partition to determine that conver-
gence to consensus is not possible before waiting until time-out.

Please refer to Algorithm 9 for detalils.

7.2.3.6 Ledger Replication

Relatively independent subsystem for serving and replicating ledger data. Pseudocode of
the service is provided in Algorithm 10.

On receiving blocks they are verified using embedded UC-s and cryptographic links. See
Platform Specification, function VerifyBlock().
7.2.4 Recovery Procedure

If a validator is behind then it must use recovery procedure to sync its state with other
validators, and obtain the latest UC for this shard, whose authoritative source is the Root
Partition.

Summary: Missing blocks are fetched from other validators, validated, and applied to the
state tree. A pending block proposal, if certified but not finalized, is applied and finalized.

It is assumed that the state tree is already rolled back by calling Revert(¥, cp) if it had
transactions of a not finalized block applied.

November 29, 2024 89/140

preliminary release

Algorithm 9 Processing a received Block Proposal
upon message <BlockProposalMsg | m = (a, B, 0, v, uc, te, txs, sr; s)> do
ensure(vaLip(m)) > Consistent and authorized message
ensure(VeriryUnicityCert(uc, T))
ensure(uc.h, = h(te))
(
(

ensure(m.v = te.v;) > signed by authorized leader
ensure(ma=a AmpB=Amo =0)
ensure(m.te.n > lte.n)
if ~CHeckREeQuesTSTATISTICS(57) then
DO_CERT_REQ_AGAINST(NuLL) > Invalid data, vote against
return
end if
if m.te.n > Ilte.n then
ensure(coT_NEw_uc(m.uc, m.te)) > newer UC must be validated and processed
if processing of new UC took too much time (recovering?) then
return START_NEW_ROUND(m.uc, m.te)
else
luc «— m.uc, lte — m.te
end if
end if
hW «— m.uc.IR.h
if StateRooT(N) = W A{V T € m.txs | vaupate(T)} then
cp < CHECKPOINT(N)
RINiT()
forall T € m.txs do
EXECUTE(N, T')
end for
RCowmpL()
DO_CERT_REQ(m.tXs, m.v, Sr) > Vote for
else
DO_ CERT_REQ_AGAINST(S7) > Vote against
end if
end upon

Algorithm 10 Ledger Replication

upon message <LedgerReplication | a,B, 0, ny,n, « luc.IR.n; s> do
> First authorization and sanity check,

return (B, 5., | n € [n..n2]}
end upon

In more details:

1. Input UC is validated,
2. Missing blocks are fetched from other (random) validator(s),

3. Each block is verified: cryptographically using embedded UC, and for correct partition
and shard ID;

4. Each transaction within the block is validated,

November 29, 2024 90/140

preliminary release

Recovering Node

Pending Block

Proposal
Validate and Execute

U

d
Validate and Execute -

- Recovery Starts
Certified
Block !
\ uc

State

Finalising a Block

LedgerRepli;:ation

Ledger Ledger
Replication Replication

Figure 19. Data Flow of an out-of-sync (recovering) Shard Node

5. Transactions are applied to the state tree,
6. Last known UC is updated if a block has newer one.

7. Then, if there is a pending block proposal which can be finalized using freshly ob-
tained UC then it will be applied to current state and block is finalized.

Please refer to Algorithm 11 for full details. Recursive recovery is used to mark locations
where last-resort failover/retry happens. More intelligent failover and back-off mechanism
could be used, with gracious shut-down on unrecoverable situations.

7.2.5 Protocols — Shard Validators
7.2.5.1 Protocol TransactionMsg — Transaction Order Delivery

Users deliver their transaction orders to one or more validators (to account for byzantine
validators censoring or re-ordering transactions).

Message: (TransactionMsg | T')

7.2.5.2 Protocol CR — Block Certification Request
This section extends Sec. 3.4.1, Certification Request).

If h’ is already ‘extended’ with UC then the latest UC is returned immediately via CReS
message; otherwise validation and UC generation continues, UC is returned via CReS
when available.

If 2" is unknown to Root Partition then the latest UC is returned immediately via CReS.

Returned message has a technical data record, which may trigger a view change: next
consensus attempt with incremented round number and different leader. A shard validator
can have only one pending CR per round number; subsequent messages are ignored. A
message with higher round number is always preferred.

November 29, 2024 91/140

preliminary release

Algorithm 11 Shard Node Recovery

function rRecovery(uc) > Assuming that Revert() is done by caller
ensure(VerryUNicityCerT(uc, 7))

for all

b € senp_LepgerREPLICATIONREQUEST(/uc.IR.n + 1) do » to a random live validator

if VeriryBLock(b, 77) then > Assuming blocks are ordered

ensure(b.a =a AbB=BAb.o=0)
ensure(b.UC.IR.n > luc.IR.n)
ensure(StateRooT(N) = luc.IR.h = b.IR.I')
ensure({ V T € b.txs | vaupaTe(T, luc.IR.n + 1)})
cp < CHECKPOINT(N)
RIniT()
forall 7 € b.txs do

EXECUTE(N, T')
end for
RCowmpL()
if StareRooT(N) # b.IR.h then

Revert(N, cp)

return RECOVERY(uc) > failover
end if
B—BUb
luc < b.UC > respective lte arrives with proposal
else
return RECOVERY(uc) > failover
end if
end for
if uc.IR.h' = StareRoot(N) then > apply pending request if possible

pr < FETCH_PR_FROM_PERSISTENT_STORAGE(pr)
if pr # NuL A pr.h’ = uc.IR.W A pr.h = uc.IR.h then

ensure(uc.IR.n = pr.n)
ensure({ V T € pr.txs | vaLpaTe(T, pr.n)})
cp <« CHECKPOINT(NN)
RIniT()
forall T € pr.txs do
EXECUTE(N, T')
end for
RCowmpL()
if StareRooT(N) = uc.IR.h then
FINALIZE_BLOCK(pr, uc)
luc < uc
else
ReverT(N, cp)
end if

end if

end if

end function

November 29, 2024 92/140

preliminary release

This message “subscribes” the validator to receive UC messages for a certain period, either
a fixed number (e.g. 2 rounds), or until the shard have successfully proposed a following
block, that is, there is another set of Root Partition validators which have received a quorum
of CR messages and therefore “taken over” the subscription.

Message: (CR | @, 3,0, v, IR, sr1; 5)

If a shard validator has reasons to suspect that Root Partition have generated a new UC,
then he must try to fetch it by trying again. sr stands for Statistical Record; a technical data
structure sent from shard validators to the Root Partition.

7.2.5.3 Protocol BlockCertificationResponse (CReS)

This section extends Sec. 3.4.2, Certification Response).

CReS is asynchronous response (in the sense of data flow) to Certification Request (CR);
there may be many CReS responses to one client request. TE stands for Technical Record,
sent from the Root Partition to shard validators. Valid if UC.h, = h(TE).

Optional field RootTrustBaseEntry indicates, that UTB 7~ have changed, e.g., have grown
by the provided entry.

Message: (CReS | a, B, 0, UC, TE, [RootTrustBaseEntry])

7.2.5.4 Protocol Subscription — subscribing to CReS messages

This message “subscribes” the validator to future CReS messages, without presenting a
Certification Request in the form of CR message. Synchronous response is the latest UC
for requestor.

Subscription ends when the shard have successfully proposed a following block, that is,
there is another set of Root Partition validators which have received a quorum of CR mes-
sages and therefore serving a subscription.

Query: (Subscriptionlsg | a,8, 0, v; s)

Response: (CReS)

7.2.5.5 Protocol InputForwardMsg — Input Forwarding
Forward a set of transaction orders.

Message: (InputForwardMsg | {T'})

7.2.5.6 Protocol BlockProposalMsg — Block Proposal
Leader broadcasts its block proposal to other shard validators.
Message: (BlockProposallsg | a,f, o, v, uc, te, txs, sr; s)
where txs = {T'}

7.2.5.7 Protocol LedgerReplication — Ledger Replication

Let’'s assume that we have a separate layer of components implementing the ledger stor-
age. Entire ledger can be verified based on latest available block and every block can be

November 29, 2024 93/140

preliminary release

verified based on the Unicity Trust Base.

This protocol is provided by every functional shard validator and dedicated archive nodes;
arbitrary parties can join the latter.

(Full) Clients, possibly in the role of helper service for light clients, use the same protocol
to obtain blocks in order to provide their services.

Query: (LedgerReplication | (a,B,0ny, [n2])
Response: ({B})

If 2nd number is missing then return everything till head. It is possible, that a reply misses
some newer blocks, either because the queried node is behind or it prefers to return blocks
by smaller chunks.

7.3 Root Partition

7.3.1 Summary

Leader-based BFT consensus based SMR. Roughly, Root Partition validators:

1. Validate incoming Certification Requests: signature correctness, they must extend
shard’s previous UC, and transaction system specific checks must pass.

2. Forward shard’s requests to the Root Partition leader

3. Root Partition leader verifies shard’s requests (incl. majority), produces UC tree,
signs.

4. Root Partition leader sends requests (all Certification Requests including signatures)
and trees and signature to Root Partition validators.

5. Followers verify shard’s requests (incl. majority), create trees, sign.
6. Followers distribute their signatures to other Root Partition validators

7. On reaching k — f (there are k validators in the Root Partition) unique signatures all
Root Partition validators send ack to others

8. On reaching k — f ack-s all Root Partition validators commit and return responses to
the shard validators.

7.3.2 Timing

Root Partition serves many partitions and shards, each implemented as a cluster of parallel
validator machines. Operation cycles work like this:

1. Shards operate in parallel:
e Shard validators send BlockCertification requests.

e Once there is a quorum of requests for a shard, the Root Partition updates an
entry in the array of input records.

2. Eventually, Root Partition starts Unicity Certificate generation. Fills data structure.
Computes root. Signs. In distributed case this all takes some time.

3. Individual tree certificates and UCs are generated for participating transaction sys-
tems. Responses are returned to individual validators.

November 29, 2024 94 /140

preliminary release

‘Eventually’ above is a compromise: 1) there is no sense to start a new round too fast, it is
necessary to collect some input requests to certify; 2) input requests with quorum should
be served as fast as possible to improve latency; 3) no need for further wait if all inputs are
present; 4) some inputs might struggle with quorum; no need to wait for the long tail; 5)
in order to generate ‘repeat UCs’ a round must be restarted after t2 time units even when
there are no requests.

Configuration parameters are: target block rate 7, and shard wait t1.

System parameters are: average root Certificate generation time ¢,; average shard round
processing time from receiving UC to sending Certification Request, including t1 wait: ,;
with standard deviation o,. There are k shards.

Let m — how many Root Partition rounds fit into one shard round; m = (¢, + t,)/t,,.

Let’'s denote cumulative (normal) distribution of BlockCertification query messages with
D, (x). Assume m = 1, let’s find a minimum of (2 — @, (1, — (¢, + 1,))(t,) by adjusting 7, and
tl.

Practical rule for optimizing the average latency (Fig. 20):

Start Root Partition round when completed quorum ratio is #,/A = t,/m(t, — (¢, + t,,)). Note
that #, measures time from the moment when UC generation starts, thus it is circular and
a rolling average must be used Median can be found by ignoring overflow from previous
round and then waiting for completion of half of the quorums. Time from round start to next
median is roughly ¢, + #,. Adjust t1 if 7, needs to be changed.

Even more practically:

1. Maintain a rolling average of 7, and A
2. Do not count the pending overflow from previous round

3. After counting half of expected quorums (k/2) start timer for measuring A and re-start
timer for measuring 1,

4. After counting kz,/A unique quorums stop timer A and start UC generation.

S A median median

S o

§ g start of Root start of Root

_‘E S Chain round Chain round

B S

NS,

Sz

]% S Al

RS

g ”4& time
A
»

A ty

il 3l Ny,
<« P|K >

A

Figure 20. Optimal average latency is achieved when 7! ~ 2, where A represents the

respective area (number of messages). 1, — A = t, + 1,.

If the distribution gets too large it makes sense to increase m, that is, have more than one
core round per one average shard’s round.

7.3.3 State

Please refer to Platform Configuration, State of the Root Partition, and Algorithm 12.

November 29, 2024 95/140

preliminary release

Configuration is provided by Orchestration and other management processes. State must
be persisted and synchronized (recoverable from other Root Partition validators).

Time-outs and timers:

e t2 —Root Partition waits for t2 time units before re-issuing a UC for a shard. This trig-
gers a retry of shard block creation, with another leader. There is one timer instance
per shard, referred as t25,, for the shard o of the partition .

e t3 — Triggers Unicity Tree re-calculation and UC response generation (monolithic
Root Partition only); Target Block Rate (z,) — Distributed Root Partition specific pa-
rameter

Communication layer:

e Validator’s secret key used to sign its messages

e related public key; known to other Root Partition validators via the Orchestration
Records, and to other parties via the 7~

e public keys of other Root Partition validators (used by the underlying communication
layer)

e public keys of Shard Validators (usage captured by the opaque function vaLin())
e communication addresses of other Root Partition validators

e conn[][] — Connection contexts to return responses to validators which sent a Block-
Certification request

7.3.4 Analysis
7.3.4.1 Safety

Root Partition enforces that each block is ‘extended’ by one block only. This excludes
conflicting blocks (forks). Root Partition must not generate “equivocating” UCs (see Section
7.2.3.4 and Algorithm 7).

7.3.4.2 Liveness

Usual properties of a partially synchronous communication model apply.

7.3.4.3 Data Availability

If a validator issues a BlockCertification call then it must not lose the block proposal (trans-
action data) until the block is finalized and committed to persistent storage.

The mechanism of ‘repeat UCs’ presents a challenge: one block may receive multiple
waves of extending attempts, initiated by subsequent ‘repeat UCs’. There are following
options:

1. Latest UC use is enforced strictly. If the Root Partition have issued a repeat UC,
then all BlockCertification requests must be based on round number suggested by
this response. Arriving and pending BlockCertification requests, referring to different
round numbers, are dropped.

November 29, 2024 96 /140

preliminary release

2. All BlockCertification requests extending the current state are considered; if there
is a pending request from a validator then it is replaced by later request from this
validator, with larger round number.

3. All BlockCertification requests extending the current state are considered, no matter
the proposed round number, and included into pending request buffer; if one pro-
posed new state achieves majority then it wins; this state does not have to be the
latest one.

On second and third option it is possible, that a shard validator have issued multiple Block-
Certification requests and eventually an older one gets certified. Thus, validators must
retain all pending block proposals until one is committed.

These options provide somewhat better liveness of the protocol; in reality, if it is the case
we can safely assume that time-out t2 has too low value relative to system latencies. The
rest of this specification assumes option 1.

Active shard validators must retain their produced blocks until successfully—demonstrated
by the ability to produce subsequent blocks—replaced by another set of validators af-
ter some epoch change. The long-term availability is provided by interested parties like
RPC nodes, archive nodes, client middleware; these components must be able to replicate
blocks with reasonable effort from the active validators.

7.3.5 Monolithic Implementation

This section (Algorithms 12, 13, 16) defines a monolithic, non-distributed Root Partition
implementation. It serves distributed shards.

For a deployable implementation, please refer to Distributed Root Partition (Section 7.3.6);
it provides the same functionality to shards without being a single point of failure, and can
provide necessary level of decentralization.

7.3.5.1 Certification Request Processing

Certification Request (CR) processing starts with sanity checking of the message. Then,
checking if a newer UC is available; if yes then it is returned immediately. This would initiate
shard recovery if necessary, and start a new shard round.

If a request tries to extend an unknown state, then the latest UC is returned immediately.

Next, the request is retained in request buffer if it is the first valid message; if the message
is a repeating message then processing stops.

Equal requests (comparing entire IR to make sure that other fields also match) from the
same shard are counted. If a request achieves simple majority then respective IR gets
added to the changes array waiting for certification, at position indexed by shard ID. If it is
clear, that a shard can not converge to a majority agreement, then the slot in changes array
is filled with IR from the certified IR array, with incremented round number and previous
certified hash set the same as the certified hash. This produces a ‘repeat UC’ which, once
delivered downstream, initiates a new shard consensus attempt.

See Algorithm 13.

November 29, 2024 97 /140

preliminary release

Algorithm 12 Global Parameters and Variables

Configuration:

a: Network Instance identifier

7 : Unicity Trust Base

P[]: Partition Identifiers

PPDI]: Partition Description Records

State:

n < 0 : Root Partition’s Round number

e «— 0 : Root Partition’s Epoch number

r_ < NuLL: Previous round’s Unicity Tree root hash
SIT][] - shard info of every o € SHj of every g € P
Variables:

VBeP,0eSHg: IRT slo] « (On)

xp: the shard tree for every g € P (Sec. 3.1.6)

v: unicity tree (Sec. 2.9.4)

changesl[][] < L Changes to IR, applied at the end of round, indexed by partition ID and
shard number

req[1[1[] <« L: BlockCertification requests, indexed by partition 1D, shard number and
validator ID

conn[][][] « L: Shard validator connections
Timers:

RESET_TIMER(t3)

VBeP, VoeSHy: RESET_TIMER(t2g,)

7.3.5.2 Unicity Certificate Generation

Periodically, do the following:

1. In case a shard has not shown progress for a period t2 since the last UC was de-
livered then respective slot is populated with the field content of previous certified IR
array, with incremented round number. This produces a ‘repeat UC'.

2. The pending changes in changes array are applied to IR. If there are no new changes
then the previous value is used.

3. Based on the array of Shard Input Records, build the Shard Trees.

4. Based on the roots of Shard Trees, build the Unicity Tree. Extract root hash value.
Obtain wall clock time. Create the Unicity Certificate.

5. For every record in IR changes array, respond to the shard based on request context
from the request buffer. Then, clean up req buffer, and reset respective t2 timer.

6. Finally, reset changes, update the previous root hash used for linking?, increment Root
Partition round number and reset the timer t3 which triggers the Unicity Certificate
Generation (Algorithm 16).

2Note that linear hash-linking using r_ illustrates the idea that some sort of cryptographic linking is
present; actual mechanism depends on the Root Partition implementation and used linking scheme.

November 29, 2024 98/140

preliminary release

Algorithm 13 CR Message Handling.
upon message <CR | m = (a, B, 0, v, IR, sr; 5); context> do

ensure(vaLin(m))
ensure(m.a =) > Right network id
ensure(B € P) > Valid part. id
ensure(o € PD[B].SH) > Valid shard id
ensure(v € SI[B,0].V) > authorized validator
conn|[B][o][v] « context > Network connection for returning messages
if IRn+SI[B,oln+1 > Round is behind/ahead
V IR.e #+ SI|B,0].e > Epoch can be incremented by RP only
VIRNK # S8I[B,0].h > Extending of unknown state
V (IR.W = IR.h) # (IR.hg = Og) > No state change <=> blank
vV =PD[B].yURv,PDIB].VI[c]) > Failed summary value check
VIRt # SI[B,0]l.UC_.C".t then > Time not set as expected
seNno_CREeS(context; 8,0, SI[B,0].UC_, GeT_Te(SI[B, 0)))
return
end if
if req[B, o][v] then > Reject duplicate request
return
end if
ensure(Tx-sYSTEM-SPECIFIC-CHECKS(P D[], IR)))
req|B, ol[v] < IR > Add the new message

C & MAX,ereqipllo] Lperegiplio]lr = P A r-h # 0g] > Number of the max. matching votes,
> ignoring Og, the “negative vote”

k — |SI[8,0].V| > number of validators
if c > k/2 A —~changes|(, o] then > Consensus
changes|B, o] « certIFy(IR, SIS, o))

else if |[req[B, o]l — ¢ > k/2 then > Consensus not possible

> if max.match + |yet missing votes| < threshold

changes[B, o] < RePeAT_CERT(SI (S, 0]) > Produce ‘repeat UC’
end if
end upon

7.3.6 Distributed Implementation

Distributed Root Partition is bisimilar to monolithic Root Partition in the sense that they
provide the same service implementing the same business logic. Distributed Root Partition
is Byzantine fault tolerant. It uses the SMR (State Machine Replication) concept.

The messaging between a shard and the Root Partition is illustrated by Figure 21, where a
shard with two validators v, and v, requests a UC. Root Partition is also depicted with two
validators, the next leader after reaching a quorum of shard requests is v;.

7.3.6.1 Summary of Execution

The summary follows the processing flow of a Certification Request by a Root Partition
validator. The flow is illustrated in Fig. 22; loosely moving counter-clockwise.

November 29, 2024 99/140

preliminary release

Algorithm 14 Certification helper functions

function certiFy(ir : IR, si : SI)
SI «— UPDATE_SHARD_ INFO(ir, sI) > Update caller’s Shard Information record si
> according to Platform Specification, functional description of Root Partition
te : TE « GeT_TE(s1)
return (ir, te)
end function
function RePeaT_CERT(si : SI)

sin «— sin+ 1 > changing the parent’s data structure as well
si.v; < LEADERFUNC(si.UC_, si.V)
rir : IR « (si.UC_.IR) > repeat the previous UC’s IR

te : TE « GeT_TE(SI)

return (rir, te)
end function
function Get_Te(si : SI)

return (si.n + 1, si.e, si.v;, h(si.SR_, si.SR), h(si.VF_, 5si.VF))
end function

Algorithm 15 “SubscriptionMsg” subscribes to UC feed

upon message <Subscriptionlsg | (a, B, 0, v; s5); context> do
ensure(vaLp((a, B, 0, v; 5)))
conn[B, o][v] < context > Network connection for returning subsequent messages
return Get_uc(gB, o)

end upon

Peer Node Selection In order to use the distributed root partition, shard validators must
choose an appropriate subset of Root Partition validators to communicate with. The set
must be shared by all shard validators during one shard round; on receiving a “repeat UC”,
the validators must communicate with a different subset. The number of validators in this
set is a tuning parameter: balances between availability and overhead. 2-3 validators is
a good starting point. This number (in the sense of delivering messages in parallel) does
not have security implications, as produced quorum sets retain shard validator signatures
which can be verified independently. UC responses must be checked for equivocation.

If a shard validator haven’t received a UC-s from chosen Root Partition validators within
2 x t2 then it sends SubscriptionMsg requests to random other Root Partition validators.
This ensures eventual synchronization if the firstly chosen validators happen to be faulty.

CR Validation No difference from Monolithic Implementation, please refer to Algo-
rithm 13 for details. If available, or on invalid request, UC is returned immediately by the
same Root Partition validator.

Shard Quorum Check Shard Quorum Check is the same as on Monolithic case (Alg. 13).
If a quorum is achieved or considered impossible, then a message is assembled (IRChan-
geReq), which includes all CR messages, and forwarded to the next Root Partition leader,
using the Atomic Broadcast submodule.

November 29, 2024 100/ 140

preliminary release

Algorithm 16 Unicity Certificate Generation

on event t3 do > Simplified, see section “Timing”
forall g € P do > Process partition timeouts
forall o € SH; do
if ~changes|B, o] A EXPIRED_TIMER(t25,,) then
changes|B, o] « REPEAT_CERT(SI (B, 0]) > Produce ‘repeat UC’
end if
end for
end for
for all (8, o, ir, te) € changes do > Apply changes
IRT glo] « (ir, h(te))
end for
forall 5 € £ do
xp < CreateShardTree(SHy, IRT p) > Sec. 3.1.6.1
THIB] < xp(l)
end for
r « CreateUnicityTree(P, PD, ITH) > Sec. 3.2.1
t « GeTUTCDateTimE()
C" « CReateUNICITYSEAL(a, 1, e, t, r_, 1} SK,)
for all (8, o, ir, te) € changes do
req(Bllo] « (1
Cshd « CReATESHARD TREECERT(C, X3)
CY"' « CreareUNiciTYTReeCERT(B, P, PD, TH)
uc «— (IRT glo|.IR, IRT glo].hy, cshard cuni cry
SI[B,0]l.UC- « uc
for all connection € conn|[B][o] do > to all validators of the shard, in parallel
seN_CREeS(connection; a, 8, o, uc, te) > subscriptions expire - see protocol

desc.
end for
RESET_TIMER(t2g,,)
end for
changes < {}
V_ < r
n—n+1l
RESET_TIMER(t3)
> Note that IRT retains its current value for the next round
end on

November 29, 2024 101 /140

preliminary release

I r

i | CR
CR
IRChangeReq
atomic broadcast)
validation|validation
CReS L
CReS

Figure 21. Message flow (simplified)

Root Chain Node
-~ .

| States ! I I
tateSync
State Recovery : b : State Recovery
1

State 1 :
{IR},C" pending ! 1
blocktree : 1
1
! 1
: 1
, Pproposal/ 1
. vote/ :

Unicity Tree &
Vote Signing
Proposal Validation

Atomic Broadcge
p pipeline “)

IRChangeReq
(leader)

Part. Quorum Check

Requests
buffer

*

9[UC Delivery]([Request Validation]

_________ t----------j-----

timeout

Atomic Broadcast
pipeline
Part. Quorum Check

IRChangeReq
(to leader)

Figure 22. Data-flow of a Distributed Root Partition Validator

Root Chain Node

IR Change Request Validation The request must be validated analogously to the Algo-

rithm 9.

November 29, 2024

102 /140

preliminary release

Proposal Generation Leader collects all unique IR change requests and assembles the
block proposal, which includes changed IR-s and a justification for each IR change request.
Next, if a particular IR has not been changed during t2 timeout for this shard then the leader
initiates “repeat UC” generation by including a specific record into the block proposal. There
is no explicit justification, followers can validate timeouts based on their own timers.

In a proposal there can be up to one change request per shard.

Due to the pipe-lined finality, a proposal should not include IR change requests for slots
with a valid IR change request in immediately preceding round.

Finally, the leader signs the proposal and broadcasts it to other Root Partition validators.

Proposal Validation On receiving a proposal, validator validates it. There are
consensus-specific checks. Every IR change request is validated based on its kind; base
rules are presented by Algorithm 9. Summary of the cases:

Quorum achieved The justification must prove the achievement of consensus by a shard.
More than half of the shard validators must have coherent votes.

Quorum not possible The justification proves that there are enough conflicting votes to
render the consensus impossible.

t2 timeout The message states, that its timer have reached the timeout; all validators can
confirm the timeout based on their own clocks, allowing a little drift.

After validating the proposal and checking the Voting Rule, the validator signs its vote data
structure and sends it to the next leader in pipeline.

On encountering unexpected state hash the recovery process is initiated (see Sec-
tion 7.3.6.2).

State Signing On assembling a Quorum Certificate (QC) with enough votes and verifying
the Commit Rule the leader modifies state: for every newly certified IR element it updates
its last UC array.

UC Generation If a leader updates the last UC array element then it returns CReS re-
sponses to all pending shard validators.

QC is included to HotStuff message pipeline, so it is broadcast to other validators (together
with the new proposal produced by this validator). On seeing new QC and knowing re-
certified IRs, other validators update their last UC arrays (the state).

7.3.6.2 Proposal

Proposal is a signed set of IR change requests, supplemented with proofs—the necessary
number of signed shard validator messages (justification). There are following options:

e Change requests with justifications.
e Repeat Certification Request where consensus is considered impossible.

e Repeat Certification Request on t2 timeout of a shard.

November 29, 2024 103/140

preliminary release

State Synchronization A Root Partition validator must have up-to-date vector of Input
Records of all shards. There is no persistent block storage. Returned Unicity Certificates,
certifying IRs, are possibly persisted within shard blocks.

The state includes necessary meta-data like the round number. This is provided by includ-
ing the Unicity Seal, which also authenticates the IR vector.

State may include atomic broadcast module specific data, e.g. uncommitted round infor-
mation.

7.3.6.3 Atomic Broadcast Primitive

The Atomic Broadcast primitive is instantiated using an adaptation of HotStuff consensus
protocol. The adaptation is optimized towards better latency on good conditions. Therefore,
a “2-chain commit rule” is used. Changes and tweaks wrt. the original HotStuff paper are:

e “2-chain commit rule”

Timeout Certificates for view change. This induces quadratic communication com-
plexity on faulty leader, but enables the 2-chain rule instead of 3-chain.

QC component votes go to the next leader directly and the next leader assembles
QC.

Use of aggregated signatures (instead of threshold signatures)

More formally, critical elements of the operation of a HotStuff-derived algorithm are speci-
fied by the following rules.

Let n denote round number, B — block, QC — Quorum Certificate, TC — Timeout Certificate.

Rule 1. Voting Rule
B.n > last vote round
Bn=B.QCn+1V(Bn=TCn+ 1A B.QC.n>max(TC.tmo_high_qgc_round))

Rule 2. Timeout Rule
n > last vote round
m=QCn+1Vvn=TCn+1)A QC.n > 1-chain round

Rule 3. Commit Rule
It is safe to commit block B if there exist a sequential 2-chain B < QC « B’ « QC such
that B.n = Bn+ 1.

Please refer to the following papers for more details:

1. HotStuff: BFT Consensus in the Lens of Blockchain
2. DiemBFT v4: State Machine Replication in the Diem Blockchain

The concepts used in this specification map to the concepts used in the HotStuff and
DiemBFT papers as follows:

State: Vector of Input Records
State Authenticator: State is identified by the root hash of Unicity Tree.

November 29, 2024 104 /140

https://arxiv.org/abs/1803.05069
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf

preliminary release

Block Proposal: List of changes to Input Records, with justifications; or a proposal to
switch epochs.

Block: There are no (explicit) blocks. The set of Input Records can be seen as the cumu-
lative state after applying all previous (virtual) blocks. Unicity Certificates are prop-
agated downstream to shards where they could be saved as part of shard blocks.
Validator implementation is encouraged to produce an audit log with all the block
proposal payloads.

Blockchain: There is no such thing as the Root Partition Blockchain. However, Unicity
Trust Base is somewhat blockchain-like: it gets a new entry added once per Root
Partition epoch, and similarly to block headers, it can be interpreted as the Root of
Trust.

Round Pipeline Committing the payload happens across many rounds due to the pipe-
lined nature of HotStuff. In consecutive rounds, the flow is like this:

1. vector of IR change requests (payload of the proposal message)

2. updated IR-s (node block-tree) and Unicity Tree root (exec_state_id of a vote mes-
sage)

3. committed Unicity Tree Root (commit_state_id of a vote message).

The output is commit_state id from a Quorum Certificate which was formed by combining
vote messages. QC is used to produce the Unicity Seal.

Pacemaker Pacemaker is a module responsible for advancing rounds, thereby providing
liveness. Pacemaker sees votes from other validators and processes local time-out event.

Pacemaker either advances rounds on seeing a QC from the leader or on no progress, on
seeing a TC. On local timeout or seeing f + 1 timeout messages a validator broadcasts
signed TimeoutMsg message. TC is built from 2f + 1 distinct TimeoutMsg messages. All
messages must apply to currently known HighestQC.

The Root Partition should not tick faster than configured Target Block Rate. In order to
throttle the speed, there is deterministic wait performed by leaders at every round.

The wait must be reasonably small to not trigger TimeoutMsg messages from other valida-
tors.

Leader Election Initially, a round-robin selection algorithm is used. In the roadmap there
is stake weighted, unpredictable leader schedule.

Reputation is taken into account while producing per-epoch validator set assignments, for
lowering the chance of inactive or unstable validator becoming a leader. One validator
should not be the leader in two consecutive rounds.

Example: Take all validators. Remove one or more (fixed number) of the previous leaders.
Remove all validators who did not participate in creation of the latest QC or TC. Pick one
pseudo-randomly, and deterministically across all the validators, from the remainder.

November 29, 2024 105/140

preliminary release

7.4 Dynamic System

This section describes mechanisms making Alphabill a dynamic system, by re-configuring
partitions, shards and the Root Partition on the fly during execution. This introduces epochs
— time periods where the configuration is stable. Configuration changes are executed at
the switch of epoch. Partitions, shards and the Root Partition are not synchronized with
each other, they have independent rounds and epochs.

Also, the changing nature of some global data structures is discussed below.

7.4.1 Configuration Changes

Table 1 provides a non-exhaustive list of configuration changes and the event synchronizing
the change.

Table 1. Synchronizing configuration changes.

| No | Change | RP epoch | Shard epoch |
1. | Adding, removing shard validators v
2. | Adding, removing Root Partition validators v
3. | Communication address change of validators
4. | Splitting (sharding) shards v
5. | Adding, removing partitions v
6. | RP’s globally visible data structure changes (also in- | v/

crements versions of 7, C*, see Sec 7.4.6.1)

+ | RP’s operation rules v

7.

8. | Shard’s data structure version changes resulting in v
changes in block content

9. | Shard’s data structure version changes resulting in v
changes in proofs

10.! Changes in validation algorithms (ledger rules) v

Adding and removing of validators may incur changes in the respective quorum sizes.
Communication layer changes are entirely handled by the communication layer. By “adding
or removing a validator” we mean a change in actively participating validator identifier sets.

7.4.2 Root Partition Epoch Change

In order to facilitate a dynamic, responsive Root Partition, it is necessary to adjust its pa-
rameters on the fly. In particular, it is necessary to add new validators and retire some
existing ones to maintain a healthy validator set, due to changing requirements and oper-
ating conditions.

The configuration can be changed once per epoch. The source information comes from
an Orchestration Process whose output is change records called Validator Assignment
Records (Table 4).

Any Root Partition protocol leader can initiate an epoch change, given it has received the
change record. The procedure works as follows:

November 29, 2024 106 /140

preliminary release

1. The leader produces a proposal where the usual payload is replaced by the Change
Request justifying the increment of Epoch (Table 2);

2. Validators who approve the epoch change continue with execution flow and do not
include usual payload until the epoch change proposal gets committed.

3. Next round after committing an epoch change is the first round of this epoch: Epoch in
BlockData is incremented; and execution continues by the updated set of validators.

Table 2. Root Partition Epoch Change Request.

[No | Field [Notation | Type |
1. | Epoch number e Ngy
2. | Validator identifiers and stakes {(v,b,}, {(OCT", Ng4)}
3. | Quorum size (Voting power) k. N4
4. | Hash of state summary r H
5. | Hash of Change Record her H
6. | Hash of the previous record he_y H
7. | (attached) Change Record (Table 4)

Fields 1, 2, 3 are copied from the Validator Assignment Records. The change record is
a “justification”: it is used as helper data for validators, but not included into the finalized
record and resulting entry in the Unicity Trust Base. An implementation may choose to rely
on alternative channels for distributing change records.

Root Partition’s epoch change updates the Unicity Trust Base. On record-oriented Unicity
Trust Base, the new record becomes part of Root Validator’s state (see section 7.4.6.6);
and the new record gets propagated to Shard validators together with the next Unicity
Certificate, as an extra field of the UCResp message.

Rule. Root Partition Epoch Change
For every proof, the Epoch Number in its Unicity Certificate’s Unicity Seal must point to the
entry in Unicity Trust Base which can be used for this proof’s verification.

Validators must not execute invalid change records and approve proposals with invalid
Change Requests. Instead, the latest valid change record must be used, whenever avail-
able; skipping over of some if necessary.

7.4.3 Shard Epoch Change

Shard Epoch Change is triggered by the Root Partition, by incrementing the Epoch number
field in Technical Record, returned with a UC.

The next shard round after finalizing a block with UC with incremented Epoch value is
processed according to the configuration of the next epoch. Leader and validators are
selected according to next epoch configuration.

Rule. Shard Epoch Change
UC with incremented Epoch number in IR can be extended by a quorum of validators of
the next epoch.

November 29, 2024 107 /140

preliminary release

7.4.4 Controlling Shard Epochs

Root Partition triggers shard epoch changes. This happens in the following steps:

1. Root Partition validators obtain the Change Record for the next epoch of a shard.

2. If a Root Partition Leader includes an Input Record Change Request of a shard into a
proposal and there is a pending epoch change of this shard, then the Change Record
is included to the Request.

3. Presence of Change Record is the signal that Epoch should be incremented. In-
cluded Change Record decision is validated, and if valid then epoch number in Tech-
nical Record (TE) is incremented. All other IR, TE changes are validated and applied
as well.

4. IR, TE-s get certified.
5. New CReS message is returned to the shard.

6. Shard’s configuration is updated: quorum size (voting power needed for consensus),
list of validators. This changes Root Partition’s validation rules: the next Certification
Request must be presented by a valid quorum of next epoch’s shard validators.

Rule. Shard Epoch Change Control
If a shard’s state is certified by a UC with incremented Epoch number in certified TE, then
the next shard round’s requests get validated by the new epoch’s configuration.

For the clarity of presentation, epoch handling is not present in the provided pseudocode.
It supports the lower layer functionality of dynamic configuration changes.

7.4.5 Validator’s life cycle

This section describes epoch changes from the viewpoint of an individual node, in particu-
lar, how a node joins and leaves shards.

Node accepts configuration updates through the Config APIl. The message is a set of
change records, one per epoch. The records should cover the range from node’s view of
the current epoch to the epoch where node’s status changes. The possible status changes
(in respect to the current factual state of the node) are covered below.

It is assumed that the node have made itself already findable via the node discovery ser-
vice.

7.4.5.1 Shard Validator, joining

Initially, a shard node is not an active validator. It receives a configuration message which
indicates, that starting from epoch ez, this node is a validator in shard o of partition £.
Following procedure is executed:

1. Reset

Clean up state and storage, unless already synchronized to the required shard
2. Start accepting proposals

On incoming proposal message:

November 29, 2024 108 /140

preliminary release

e Extract the UC and update the last known UC if newer
3. Start accepting client transactions
On incoming client transaction:
e If it is possible to determine the leader then forward client transactions to the
leader.
e Reject otherwise.
4. Obtain the latest UC for the shard (8, o) from the Root Partition.
5. Launch recovery if behind
6. Subscribe to block feed of the shard (8, o).
On arrival of a new block:
o Verify the block, apply the block to state and store in ledger
e If block’s UC indicates that the expected epoch arrives:
— Starting from the next round, this node is full validator
— Execution and message handling continues as a full validator

If the block streaming protocol is not available the procedure is as follows:

1. Reset
Clean up state and storage, unless already synchronized to the required shard
2. Start accepting proposals
On incoming proposal message:
e Extract the UC and update the last known UC if newer
3. Start accepting client transactions
On incoming client transaction:
o If it is possible to determine the leader then forward client transactions to the
leader.
¢ Reject otherwise.
4. loop:
¢ Obtain the latest UC from the Root Partition
e Launch recovery if the node is behind
¢ If the UC indicates that the epoch where node is a full validator have started:
— this node is now a full validator,
— exit loop.

The state graph is depicted at Figure 23.

7.4.5.2 Shard Node, leaving

If the node is an active validator and it receives indication that from an epoch e this node is
not any more a member of shard (8, o), then the following procedure is executed:

On receiving a UC indicating the expected epoch update:

1. Starting from the next round, this node is not a validator.

November 29, 2024 109/140

preliminary release

synchronize
unassign tx

\
staking proof .
change joining ¢
joining tx /_\ record _ epoch
start staked @ assigned
unstaking tx

leaving epoch

Figure 23. Node state graph (node’s view)

Stop accepting proposals.

Stop accepting client transaction messages.

OK to reset the state.

Continue serving the block replication protocol; it is mandatory to retain the storage
until the next quorum have committed at least one block.

OK to reset the block storage.

C

=

The node (more specifically the node operator) can initiate the leaving process by send-
ing an “unassign transaction” to the Orchestration Partition. Processing may take arbitrary
time, and the unassignment may happen for other reasons as well. Validators are encour-
aged to not drop off without executing the unassignment process.

Now, the node may submit a request to the Orchestration Partition to be assigned again as
a validator, possibly at another shard. The node is encouraged to keep its identity.

Rule. Every Shard Node must ensure the availability of generated ledger until the next
validator set takes over.

7.4.5.3 Shard Node, ambiguous records

If there is a double assignment before leaving then the validator must continue at the current
shard. When eventually the validator gets dismissed, it must join according to the latest
valid change record.

7.4.5.4 Root Partition Node, joining

On receiving a change record:

Obtain the current Root Partition configuration via the GetUnicity TrustBase RPC call
Validate the updated Unicity Trust Base

Make itself findable via the node discovery service

Start listening to Root Partition proposal messages.

On receiving a proposal where ProposalMsg.BlockData.Epoch is incremented and
the epoch includes the node:

SR =

November 29, 2024 110/ 140

preliminary release

Use the Root Partition recovery protocol (GetStateMsg / StateMsg) to synchro-
nize the state,

Process the proposal,

Start processing shard Certification Requests,

Continue as full Root Partition validator.

7.4.5.5 Root Partition Node, leaving

A Root Partition node may leave the active validator set after performing a successful epoch
change, where this node is not a member of the new validator set anymore. The node is
responsible for successful hand-over: by making its state available to the new joining nodes
briefly after the beginning of the next epoch, and offering the Unicity Trust Base distribution
service without limitations to all current and near-future validators.

A Root Partition node (more specifically, the operator of the node) can initiate the leaving
process by sending a specific “unassign transaction” to the Orchestration Partition. Pro-
cessing may take arbitrary time, and the unassignment may happen for other reasons as
well. Root Partition validators are strongly encouraged to not drop off without executing the
unassignment process.

Rule. Root Partition Node must keep running until the next epoch’s Unicity Trust Base
entry gets committed.

7.4.6 Dynamic Data Structures
7.4.6.1 Versioning

The content of Unicity Seal and Unicity Trust Base, globally used data structures across
the Alphabill Platform, depend on Distributed Root Partition implementation details. These
data structures must be versioned to accommodate necessary iterative changes while the
Root Partition implementation roadmap is being executed. Thatis, 7 = (v,-) and C" =
(v,), where v is the version number and the rest depends on the version. In the following
sections, we assume that a section shares the same version number and it is omitted for
brevity.

Accordingly, the function VerifyUnicitySeal must be able to verify a recent subset of Unicity
Seal versions, based on an authentic copy of the up-to-date Unicity Trust Base. This can
be imagined as a wrapper, where the version number of input chooses the right implemen-
tation.

7.4.6.2 Evolving

Unicity Trust Base itself evolves (e.g., new records are added, while format/version stays
the same) when the Root Partition validator set changes. Every evolved copy of Unicity
Trust Base is cryptographically verifiable based on an older authentic copy of the Unicity
Trust Base.

November 29, 2024 111 /140

preliminary release

We denote the initial, authentic® Unicity Trust Base as 7pase @and updated Unicity Trust Base
as 7, and for each version of data structures define the function

VerifyUnicityTrustBase, (7)) .

For every supported version of proofs an implementation of VerifyUnicitySeal and the rele-
vant Trust Base must be provided. Only the latest version of Unicity Trust Base can evolve.

At the launch, the system is bootstrapped to a genesis state where the content of Unicity
Trust Base, together with Genesis Blocks, are created via some off-chain social consensus
process. The relevant data structures are the same, while references to previous states
and signatures created by previous states are hard-coded to zero values.

7.4.6.3 Monolithic, Static Root Partition

We start with one Root Partition validator, which does not change (and can not change its
keys).

o 7 =(a,pk),
where « is the system identifier and pk is the public key of the Root Partition.

o C"=(a,n,,t,r_,135),
as defined in the Platform Specification; s is a digital signature created using Root
Partition’s secret key.

function VeriryUniciTySeaL(r, C', 77)

return (7. = C.a Ar = C".r A\Very5(C",C".s)) » calculated over all fields except
signature
end function
function VERFYUNICITY TRUSTBASE(7 pase, 7)

return (Toace = 7)) > No changes are allowed
end function

7.4.6.4 Monolithic, Dynamic Root Partition

In the case of dynamic Root Partition the validator(s) can change at epoch boundaries. The
identifier (public key) of new validator is signed by the current one, and this signed record
is appended to the Unicity Trust Base.

o T,=(a,e,pk,;s)
is Unicity Trust Base Record, where s = Sigg,_,(T.) is a cryptographic signature over
verification record of epoch e (calculated over all fields except signature), signed by
the previous epoch’s secret key of the Root Partition.

o T =(T;,Tj,....Ty),
where j is the first epoch and k is the latest epoch covered. In the pseudocode below,
we use notation 7 [j] := (T € 7: T.e = j), that is, the element pointing to the epoch
number j. System instance identifier of every epoch is invariant: V i, j: T;.a = T.a.

3Authenticity is guaranteed by e.g., off-band verification of the Genesis Block and embedding the newest
possible Unicity Trust Base into the verifier code during release management process, analogously to certifi-
cate pinning.

November 29, 2024 112/140

preliminary release

o C'=(a,n,t,r.,r;(s,e)
as defined in the Platform Specification; s is a cryptographic signature created using
Root Partition’s secret key of the epoch e.

function VeriryUNiciTYSEAL(r, C', T7)
if (T.a#C.aVvr=+C.rthen
return O
end if
if 7[C".e] = L then
return error
end if
return (Verr o (C",C".5) = 1)
end function

> No record in trust base for the epoch

> calculated over all fields except signature

Note that the caller must ensure that a relevant record is present in Unicity Trust Base, that
is, 7[C".e] # L. Obtaining a fresh Unicity Trust Base is covered by the Chapter Alphabill
Anterior.

function VERFYUNICITYTRUSTBASE(7 phase, 7)

bmax = maxyeq,,, T.e

tmin = minyes T.e

if tmin > bmax + 1 then
return error

> last epoch in trust base
> first epoch number to be verified

> not a continuous chain

end if
forT €7 do
if Thase|bmax].a # T.a then
return error
end if
end for
for j € {tmin..bmax + 1} do
if VerTbase[j_l]'pk(T[j], T[_]]S) = 0 then
return O
end if
end for
for j € {tmin + 1.. maxres T.e} do
if Verf]'[j_l].pk(T[j],T[j].S) = 0 then
return O
end if
end for
return 1
end function

> non-invariant system id

> verify based on available trust base

> verify consistency of new

For efficiency, the user must cache the verification results. For example: 1) at the startup,
the bundled trust base is checked for consistency, and 2) each time an evolved trust base
is encountered, a) it is checked for equivocation, b) if the trust base is newer than the base
and verified using the function VerifyTrustBase, then the base trust base is updated with
new records from the new trust base (or substituted with the latest version if the implemen-
tation is accumulator-like).

This version is illustrative and not for implementation.

November 29, 2024 113/140

7.4.6.5 Distributed, Static Root Partition

preliminary release

Unicity Trust Base is a map of Root Partition validator identifiers to validator public keys,
and a number g which specifies the required quorum size, i.e.,

o 7 =(a,{(i,pk)|i<1...v,},q) where g>v,—-f,

o C'"=(a,n,t.,r_,r;s) where s={@s)|ie(..v,)} and

Is| >q.

Unicity Trust Base does not change as the Root Partition configuration is static.

function VeriryUNicITYSEAL(r, C', T")
if7.0a#C'.aVvr+C.rthen
return O
end if

if-(Vm,nel..|C"s|: C'.s[m].i # C".s[n].i) then

return O

end if

if |C".s| < 7 .q then
return O

end if

for (i,s) e C'.s do

> Duplicate signers

> No quorum

if (Vers . (C', s) = 0) then > calculated over all fields except signature

return O
end if
end for
return 1
end function

7.4.6.6 Distributed, Dynamic Root Partition
The Unicity Trust Base Record is defined by Table 3.

> Invalid signature

> Success

Table 3. Unicity Trust Base Record of Dynamic Distributed Root Partition.

| No | Field | Notation | Type
1. | Network instance identifier a A (invariant)
2. | Epoch number e Ne4
3. | Epoch starting round . Nea
4. | Validator identifiers and stakes {v,b,}. {(OCT", Ngs)}
5. | Quorum size (voting power) k. Ny
6. | Hash of state summary r H
7. | Hash of related change record her H
8. | Hash of previous record he_y H
9. | Signature of previous epoch validators Se_1 version-dependent

Fields 1, 2, 4 and 5 are copied from the referenced Orchestration Change Record. Initially,
the stakes are fixed to 1. When appropriate orchestrating processes implementing (dele-
gated) Proof of Stake mechanisms are in place, the stakes reflect the epoch’s locked stake

amounts of each particular validator.

November 29, 2024

114 /140

preliminary release

Unicity Trust Base is a chain of records defined by Table 3.

Unicity Seal is a record signed by the validator set of the respective epoch as defined in
7.4.6.4, with an additional requirement of using the required multi-party signature scheme.

The verification functions are as defined in 7.4.6.4, where the signatures are interpreted in
broader sense as multi-party signatures, created by respective quorums of validators.

7.4.6.7 Signature Aggregation

This is an optimization of Distributed Root Partition data structures, reducing the sizes of
produced proofs and the trust base. It is based on a cryptographic primitive implementing
the “non-interactive, accountable subgroup multi-signature”, allowing identification of all
parties whose (part-) signatures are aggregated into a final, aggregate signature. On the
case of aggregatable signature schemes, the m-of-n aggregation of public keys is non-
trivial though?, thus, it may be implemented further down the roadmap.

Unicity Trust Base is a tuple of aggregate public key and a numeric parameter (g) specifying
the necessary quorum size. Signature on Unicity Seal is an aggregate signature, produced
by combining at least ¢ partial signatures, and a bit-field identifying the signers. Partial
signatures are created by individual Root Partition validators using their private keys.

A standardization attempt of the closest appropriate signature scheme is available from
IETF — https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/.

Specifically, threshold signature schemes are avoided because of 1) accountability require-
ment 2) complicated and security-critical key setup, and 3) missing support of non-equal
voting powers.

7.5 Root Partition Data Structures (illustrative)

Below is an informal illustration on how Alphabill data structures integrate to HotStuff con-
sensus primitive; in ABNF format®. The structures document the distributed, dynamic Root
Partition.

defined above
UC = IR TechRecordHash ShardTreeCertificate UnicityTreeCertificate UnicitySeal ; UC = (IR,h,,Cshad cuni cr)
IR = RoundNumber Epoch PreviousHash Hash SummaryValue Time BlockHash SumOfEarnedFees
; IR=(n,e, W, h,v,t,hp, fp)
ShardTreeCertificate = ShardIdentifier *SiblingHash ; CS"d = (o;hi, ..., hi)
UnicityTreeCertificate = PartitionIdentifier PartitionDescriptionHash *HashStep
HashStep = PartitionIdentifier SiblingHash ; CU" = (8,dhash; (8, h2), ..., (B, he)))

interface:
UnicitySeal = Version NetworkIdentifier RootPartitionRoundNumber Epoch Timestamp PreviousHash Hash
*Signatures ; C' = (a,n,ty,r-,r;s)
; where [Signatures| = quorumThreshold > 2f

internals:
LedgerCommitInfo = UnicitySeal
QC = VoteInfo LedgerCommitInfo *Signatures

VoteInfo = RoundInfo
RoundInfo = RoundNumber Epoch Timestamp ParentRoundNumber CurrentRootHash

Ic messages:

4See e.g., https://eprint.iacr.org/2018/483
Shttps://tools.ietf.org/html/rfc5234

November 29, 2024 115/140

https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
https://eprint.iacr.org/2018/483
https://tools.ietf.org/html/rfc5234

preliminary release

VoteMsg = VoteInfo LedgerCommitInfo HighQC Author Signature

ProposalMsg = BlockData [LastRoundTc] Signature
BlockData = Author Round Epoch Timestamp Payload AncestorQC
Payload = *IRChangeReq | RCEpochChangeReq
IRChangeReq = PartitionIdentifier CertReason *CR [EpochChangelustification] SenderSignature
; presence of justification ==> epoch++
RPEpochChangeReq = Epoch *(NodeID Pubkey Stake) QuorumThreshold StateHash ChangeRecordHash
PreviousEntryHash SenderSignature [ChangeRecord]

; evolving trust base:

RootTrustBase = Version *RootTrustBaseEntry

RootTrustBaseEntry = NetworkIdentifier Epoch *(NodeID Pubkey Stake) QuorumThreshold StateHash
ChangeRecordHash PreviousEntryHash *Signatures

TimeoutMsg = Timeout Author Signature [LastTC]

; If HighQC is not from prev. round then there must be TC of prev,

; justifying the incremented round number
Timeout = Epoch Round HighQC ; HighQC - highest known Quorum Certificate to the validator
TC = Timeout *Signatures ; 2f+1 Signatures ; TC - Timeout Certificate

CertReason = ’quorum’ | ’quorum-not-possible’ | ’t2-timeout’ ; flags in appropriate encoding

rc helpers:

GetStateMsg = Nodeld ; id of the validator requesting the state
StateMsg = *UC CommittedHead BlockNode RootTrustBaseEntry
CommittedHead = BlockNode = RecoveryBlock

RecoveryBlock = BlockData *InputData QC CommitQC

InputData = PartitionIdentifier Shard IR Sdrh

shard-rc messages

CR = NetworkIdentifier PartitionIdentifier Shard NodeIdentifier IR BlockSize StateSize Signature

; Certification Request CR = {a,B,0,v;IR,{p,{s;s)

; 1f prevStateTreeHash is already ’extended’ with UC then return latest UC immediately.

; otherwise validation and cert. generation continues, cert is returned once available.

; Returned UC can be repeated cert for prevStateTreeHash which triggers next attempt using different
leader

; a validator can have multiple pending requests extending the same hash; latest one is identified using
IR.n

CReS = NetworkIdentifier PartitionIdentifier ShardIdentifier UC TechRecord [RootTrustBaseEntry]
; Certification Response

StatisticalRecord = NumBlocks SumFees SumBlockSize SumStateSize MaxFee MaxBlockSize MaxStateSize
R = (., f5. L8, Cs, f5. 05, Is)

FeeRecord = *(ValidatorIdentifier Fees) ; VF

TechRecord = Round Epoch LeaderID SRHash VFHash ; TE = (n,,e,, v, her, hyt)

ShardInfo = Round PreviousHash PrevStatisticalRecord StatisticalRecord *ValidatorIdentifier PrevFeeRecord
FeeRecord LeaderIdentifier PrevUC ; (n,h_,SR_,SR,V,VF_,VF,v,, UC-)

; Subscription - Subscribe to CReS message feed in order to obtain the latest UC for synchronization
SubscriptionMsg = NetworkIdentifier PartitionIdentifier Shard NodeIdentifier signature

; this request provides or updates validator connection parameters at

; transport layer so that Root can return CReS messages

November 29, 2024 116 /140

preliminary release

8 Orchestration

8.1 Introduction

By orchestration, we mean the operational management and re-configuration of a dynamic
Alphabill Platform instance. Orchestration processes manage the validators, manage the
lifecycle of partitions and govern sharding, manage incentives to the participants, and man-
age updates to the system. Orchestration executes the on-chain mechanisms like Proof of
Stake and Tokenomics.

Orchestration is governed by the Governance: an organizational process run by the Alpha-
bill Foundation, and potentially involving on-chain community voting (“coinvote”) to make
high-level governance decisions, which become binding to the Foundation. Orchestration
parameters and algorithms can be changed only through the Governance.

8.1.1 Orchestration of the Dynamic Distributed Machine

The sections so far document a blockchain system which is entirely bootstrapped and man-
aged by a centralized entity. This includes both administrative management and technical
management, in the form of system administrators implementing requested changes. For
example, if a validator wants to join the Alphabill platform, the entity must give it explicitly
a permit, and this is executed as a change made by system administrators. Analogously,
in order to add a new partition, the change must be approved and executed by trusted
entities. This may include restarting of the system.

This section is about implementing Alphabill as a continuously running, decentralized and
permission-less system. In the final form, it relies on algorithmic, on-chain orchestration
implementing delegated proof of stake mechanisms and the economic security layer.

The launch as a permission-less, PoS controlled, decentralized blockchain is a fragile af-
fair, due to initial instability (low number of validators, low locked stake, unpredictable us-
age patterns). Therefore, the system launches under the support and control of Alphabill
Foundation, and a gradual roadmap to full decentralization follows. While executing the
roadmap, automated, on-chain orchestration processes, briefly described in the following
sections, are taking over.

The orchestration is architected in a modular way. The Orchestration Partition is a plug-in
replaceable component, possibly implementing different mechanisms, like Proof of Author-
ity, Proof of Stake, Delegated Proof of Stake.

The Orchestration Partition implements a number of modular Orchestration Processes.

The partitions of Alphabill Platform are either fully managed by the Orchestration, or are

November 29, 2024 117 /140

preliminary release

implemented as “permissioned partitions”: managed by a permissioned entity with admin-
istrative rights given by the partition lifecycle orchestration process.

8.2 Data Flow

This section describes the “control plane” of Alphabill Distributed Machine, complementing
the “data plane” of user transaction processing.

8.2.1 Orchestration Partition

The Orchestration Partition is a usual partition within an Alphabill instance. It produces a
ledger with blocks, recording transactions what we call change records. Change record
formats of different orchestration processes are documented in the following subsections.

8.2.2 Configuration Agent

Orchestration Partition just saves the change records in its ledger. The partition nodes are
also isolated processes, not connecting directly to other partitions and shards, except the
Root Partition. In order to transport the relevant change records to concerned nodes, an
independent process called “Configuration Agent” is used. An agent can be considered as
a part of a logical validator instance.

Agent replicates Orchestration Partition blocks using usual block replication protocols, ei-
ther directly or from a public or private RPC Node. Agent searches for relevant change
requests. On encountering a relevant change request, it is pushed to validator’s partition
node process over the Config API, see Fig. 24.

A Validator .
Orchestration ' i
Partition Node
' Process
A
Conflig API

% Block Replication—i) Agent i
Figure 24. Orchestration Information Flow for Partition Nodes

Relevant change requests: change the set of validators in particular shard, change the
Root Partition validators, change the parameters of particular partition and shard. If a
validator hasn'’t joined a shard, then a relevant record provides a future configuration of a
partition and shard which the validator will be a member of, signaling that the validator must
sync with the shard and join the validator set at a future epoch change. Conversely, when
a validator identity does not appear as a member of a future validator set in the shard, then
it must leave the active validator set at the required epoch change.

Node processes authenticate (at the transport level, e.g. localhost access only) and trust
their configuration agents; nevertheless, change records must be validated using trans-

November 29, 2024 118/140

preliminary release

action execution proofs, based on pre-agreed identity of the Orchestration Partition and
Unicity Trust Base. Agents can be shared within trusting entities.

8.2.2.1 How a Validator joins a Partition

Validators rely on agents for performing any steps involving user-level communication with
other partitions and shards. The process works like this:

e Node Agent detects a new Change Record it is involved with, learns the partition
identifier and shard number

Node Agent obtains the current epoch number from the shard

Node Agent obtains the Change Records from current to the joining one (if not known)

Node Agent activates the node process by making config API call providing neces-
sary information

Node continues as described in Section 7.4.5.1.

8.2.3 Permissioned Partitions

A Permissioned Partition is fully owned and controlled by a centralized entity. The en-
tity identifier is part of the partition configuration. The entity can freely choose partition
parameters, including the validator identities, implementing the “bring your own validator”
scheme.

Permissioned Partitions are still integral parts of the Alphabill Framework and request Unic-
ity Certificates from the Root Partition. In order to do so, a permissioned partition must:

e provide the identities of validators to the Orchestration Partition, so that Root Partition
can fetch this information and authenticate UC Requests, in the form of transactions
with change requests,

¢ fetch the Root Partition configuration and keep the node processes updated,

e present proofs of Root Partition incentive contributions (fees) to the respective Or-
chestration Process.

Permissioned Partition management can be implemented by a centralized configuration
management system (automation platform) which connects to node Config API directly,
see Fig. 25.

A Permissioned Partition may keep its ledger private.

It is up to the permissioned partition instance to decide if, how and how much to charge
from its users. The maintainer of a permissioned partition must have a fee deposit to pay
for Alphabill platform services.

8.2.4 Root Partition

The Root Partition plays active role in enforcing and synchronizing the Orchestration. It
initiates epoch changes and accepts UC Requests only from valid members of partition-
s/shards. In order to do so, it must have access to change requests.

November 29, 2024 119/140

preliminary release

Root Chain

Orchestration
Partition

Node

Transactions: Processes

Partition Changes A I
: Conflig API

- Block Replication:\: Configuration '
w Root Chain changes Management :

Figure 25. Orchestration Information Flow for Permissioned Partition

The recommended way is to allow every active Root Partition Validator (as an entity) to be
a validator in the Orchestration Partition, by running two node processes and facilitating
direct information flow.

8.3 Orchestration Mechanisms

8.3.1 Proof of Authority

In the Proof of Authority mechanism, a permissioned, authorized entity provides the or-
chestration information by sending signed transactions to the orchestration partition.

8.3.2 Proof of Stake

Proof of Stake mechanisms provide decentralization, permissionlessness and Sybil attack®
protection.

Proof of Stake mechanism is based on the fact that there is a finite amount of certain
backing asset, in Alphabill’s case it is the native currency, ALPHA. When each validator
presents a proof of locking a certain amount of ALPHA, it is guaranteed, that there is a real
capital cost involved and hard economical limits of potential power grab.

Also, the staking mechanism provides a commitment and shared ownership structure for
the Alphabill Community.

Validator’s voting power in consensus correlates to its staked amount. That is, votes have
weights, and the quorum size is defined as the arithmetic sum of stakes of agreeing valida-
tors which is necessary to reach a consensus.

The leader election algorithm may use stake amounts as an input, so that the probability of
becoming a leader correlates to the stake amount (Section 8.4.4).

®An entity generates an arbitrary number of identities in order to obtain unfair representation strength in
a distributed algorithm

November 29, 2024 120/ 140

preliminary release

8.3.3 Tokenomics Toolbox

Tokenomics is the economic security layer of the Alphabill Platform. It extends the security
beyond traditional assumptions of distributed systems, e.g., a certain ratio of honest nodes.

Orchestration implements the tokenomics layer. In order to do so, there are certain tools
and levers.

Incentives are payouts in ALPHA currency to incentivize validator participation in the Al-
phabill System. There are incentives for staking (reward for capital cost) and incen-
tives for providing secure and highly available validation service (reward for compu-
tation effort).

Reputation system improves the stability of the system, by incentivizing long-term identi-
ties and stable and high-quality behavior of validators.

Slashing is a mechanism enabled by staking: to disincentivize malicious behavior, it is
possible to forfeit part or all of the stake as a punitive measure.

Stake Limits per validator allow the system to influence the number of participating phys-
ical validator machines; e.g., when there is an upper limit of staking rewards per
machine, the stakers are incentivized to bring in more machine instances.

Liquid Staking is a mechanism where otherwise locked stake can be used for other pur-
poses, for example used for staking in multiple partitions. This allows stakers to
achieve better yield at the cost of higher risks.

Delegated Proof of Stake is an extension to PoS where external parties can delegate
their state to specific validator nodes. Crucially, this democratizes the staking, so
that non-sophisticated parties can participate, and also brings in external knowledge
about the trustfulness of validators: delegators choose which validators they are plac-
ing their stakes on.

8.4 Orchestration Processes

On-chain Orchestration is executed by the Orchestration Partition, and it is divided logi-
cally to a set of independent processes. Following subsections detail the interface between
Alphabill Platform, the Orchestration and Governance: expectations on Orchestration Pro-
cesses and their output data structures. This fixed interface allows Orchestration Partition
to be a plug-in replace component, for example to use either Proof of Authority or Delegated
Proof of Stake implementations; or to change tokenomics mechanisms.

8.4.1 Validator Assignment

The process produces change records (called Validator Assignment Records), which as-
sign validators to specific partitions and shards, as shown in Table 4.

The assignment of a particular validator is revoked by issuing a new record, which does
not include the validator into the shard any more.

If a shard or entire partition stops working at the start of an epoch, the corresponding
change record will have empty values for the validator identifiers and stakes as well as for
the quorum size ({v,b,}. = L A k, = L). At all other times the values must not be empty.

The exact content of Epoch Switching Condition is left open to optimizations: it can be a
suggested or mandatory time or round number, or an arbitrary predicate. For example, a

November 29, 2024 121/140

preliminary release

Table 4. Change Record: Validator Assignment Record

| No | Field | Notation | Type
1. | Network Identifier a A
1. | Partition Identifier B P
2. | Shard Identifier o {0, 1}=SHk
3. | Epoch Number e Ngy
4. | Epoch Switching Condition e L
5. | Validator identifiers and stakes {(v,b,}. {(OCT",Ngs)} U {L}
6. | Quorum Size (Voting power) k. Nig U{L}
7. | Hash of Previous Record he_ H

Switching Condition may be a Root Partition round number range with soft enforcement:
the responsible validators will not receive any fees for their work outside the expected
epoch.

Initially, the Epoch Switching Condition is a fixed shard’s round number: ¢, = (ng, >
constant)

Quorum Size is measured in number of validators or total amount of stake behind validator
votes to reach consensus. For the Root Partition, k > 2/3)’ b,. For shards, k > 1/2 3 b,.

Hash of Previous Record may be implemented inexplicitly if the underlying base partition
provides hash linking of records.

8.4.2 Partition Lifecycle Management

This process creates, modifies and deletes partitions. The output is Partition Update
Record with System Description Records and the configuration of consensus layer, as
illustrated by Table 5.

Table 5. Change Record: Partition Update

| No | Field | Notation | Type
1. Network ldentifier a A
2. Partition Identifier B P
3. Partition Description PDIS] PD
4. | Operation: {CREATE|CHANGE|DESTROY} op
5. | Hash of Genesis hyg H (optional)
6. | Switching Condition Pe L
7. | Cluster Size k N3,
8. | Target Block Rate t N3,(ms)
9. Time-outs t2,t3 N3,(ms)
10. | Hash of previous record he_1 H

The set of required fields depends on operation. Switching condition may be either shard
or root partition round number, or shard epoch number switch.

November 29, 2024 122/140

preliminary release

8.4.3 Shard Management

This process creates and updates Sharding Schemes for partitions. The switch to a new
sharding scheme is executed at epoch change; see Table 6.

Table 6. Change Record: Sharding Scheme Update

| No | Field | Notation | Type
1 Network Identifier a A
2. | Partition Identifier B P
3. | Sharding Scheme SH SH
4. | Switching Epoch Number e Ney
5. | Hash of previous record he_y H

The Input data for shard management process is collected by the Root Partition. It main-
tains a rolling statistics record for every shard for the ongoing shard epoch; and keeps
the aggregates of the previous epoch. The rolling amount is modified based on reported
measurements in UC Requests, as sent by the shard validators.

Each shard is responsible for fetching the record certifying the previous epoch’s aggregate
statistics record, and submitting it as a transaction to the Orchestration Partition. The
aggregate fee record is certified by any UC of the following epoch.

8.4.4 Incentive Payouts

This process makes payments to Alphabill Validators. The payouts are correlated with
the quality and quantity of provided services, collected fees of the particular partition, the
platform-wide impact (“common good” factor), and the amount of locked stake. Payouts
correlate negatively with unwanted behavior: instability, not following the ledger rules, not
following the orchestration and governance decisions, and more severely in the case of
equivocation or other acts with malicious intent.

The process should encourage stability and prefer on-chain data (data with cryptographic
proofs) for payout calculation. For example: only operational validators can become
block proposers (executed by the leader election algorithm; probability depends on stake
amounts), and every successful block proposal (as seen in block headers) earns a credit
unit for the proposer. A valid “fraud proof” (e.g., two conflicting signed messages from
a validator) resets the credit and may expel the validator at the next epoch (executed by
Validator Assignment). Node reputation and “tokenomics” are discussed elsewhere.

Payouts are not immediate—they are delayed by few epochs.

The Input data is collected by the Root Partition. It maintains a rolling “earned fee” amount
for every validator of every shard for the ongoing shard epoch; and keeps the cumulative
amount of the previous epoch. The rolling amount is incremented for the partition’s leader
by the amount of collected fees when an UC of non-empty block gets issued.

Each shard validator (or the “representative”, i.e., validator’s agent process) is responsible
for fetching the record certifying the previous epoch’s total fees collected by blocks pro-
posed by the validator, and submitting it as a transaction to the Orchestration Partition.
The cumulative fee record is certified by any UC of the following epoch.

November 29, 2024 123 /140

preliminary release

Orchestration Partition then runs the Incentive Payout process, generating transaction or-
ders unlocking reward payouts. Shard validators are responsible for fetching the transaction
orders and submitting them to the Money Partition.

Incentive Payout process takes into consideration possible fraud-proofs, submitted by any-
one before a deadline a few epochs later when payout transaction orders are generated.

8.4.5 Gas Rate Multiplier

The process updates periodically the Gas Rate Multiplier value, which provides relatively
constant fees (as measured in external reference currencies). This absorbs possible fluc-
tuations of the ALPHA exchange rate; without the overhead of maintaining a “stablecoin”
for the fee payments.

8.4.6 Software and Version management

This process manages software updates, and thereby possible changes in the ledger rules.
The output helps to coordinate possibly compatibility-breaking changes, up to the precision
of a Root Partition round number when the switch happens.

8.4.7 On-chain Governance

In order to approve arbitrary changes expressible in human language, a stake-weighted,
in-person voting mechanism is implemented (elsewhere called “coinvote”). The decisions
become binding to the Foundation and/or members of the Alphabill community.

8.5 Proof of Authority Orchestration Partition Type

8.5.1 Summary

This is the definition of Proof of Authority (PoA) Orchestration Partition. The configuration of
the system is defined and managed by an authorized party, recorded by the Orchestration
Partition, and executed by the dynamic Alphabill Platform.

The partition is an append-only database of Validator Assignment Records (Table 4).

8.5.2 Motivation and General Description

Each unit in the Orchestration Partition represents a partition or a shard. Each such unit of
type var specifies the configuration for its corresponding shard or its corresponding partition
without shards. The units get automatically created by the first transaction that updates
their value.

The units have one transaction type (addVar) which appends a configuration for one epoch.
The epoch numbers start at 0 and increase strictly by 1 for each unit in each successive
invocation of the addVar transaction.

All units have the same fixed owner predicate ¢,c. For example, the predicate could assign
the ownership to a permissioned entity. No fees are applied to the transactions and there
are no fee authorization proofs.

November 29, 2024 124 /140

preliminary release

The units of type var store little specific data. Instead, parties interested in validator assign-
ment records should read the transaction processing results of transactions of type addVar
which work on the units. There is no transaction content validation.

Every such transaction invocation specifies a new epoch configuration for a single shard
or a partition with no shards; the configuration includes a new epoch start condition and
a new validator list for the epoch. The assignment of a particular validator is revoked by
future transaction which specifies a new decision that does not include the validator into the
same partition/shard any more. If a shard or partition stops working (for example, when a
shard gets split into new shards), the stopped entity will have a validator assignment record
gwithgv, = L.

As validators need to configure themselves according to this information, it is expected that
the unit owner submits the information to the blockchain early enough to give validators
ample time to reconfigure and synchronize their state before the epoch switching condition
is reached.

The genesis block B, of the orchestration partition contains the first of such transactions
of type addVar for all active partitions and shards, listing the initial state as a validator
assignment record of type VAR.

8.5.3 Specification of the Orchestration Partition

8.5.3.1 Parameters, Types, Constants, Functions

System type identifier: st = 4

Partition identifier: g, = 4

Type and unit identifier lengths: tidlen = 1, uidlen = 32

Summary value type V: L

Summary trust base: V = L

Summary check: none

Constants: ¢, — fixed owner predicate of type L

Unit types: U = {var = 1} (validator assignment records)

Unit data:

e Dy, : tuples (e) where e is the epoch number from the validator assignment record of
the previous transaction order on the same unit.

For every active shard and every active partition without shards there is always exactly one
unit of type var with a constant (fixed) owner predicate. Unit identifier ¢ is calculated as a
hash of the partition identifier and shard identifier: ¢« = NodelD(var, H(B, 0)); if the partition
has no shards, the shard identifier is assumed to be an empty string for this calculation

(o= 1)

A validator assignment record VAR describes an epoch configuration for a shard or a par-
tition without shards. The record is of type VAR which is a tuple (e, n,, v.), where:

e ¢ —epoch number of type Ngy

November 29, 2024 125/140

preliminary release

e 1, — epoch switching condition: root partition round number of type Ng,. The epoch
starts when the unicity seal on the given block on the given shard contains a root
partition round number that is equal to or bigger than the specified number: C'.n, > n,

e v, —validator assignment of type VA U{L}. If and only if the shard or partition without
shards does not work in this epoch, the following condition must hold: v, = L.

In the future, the type of the epoch switching condition n, can be made more generic. It
could come to represent a suggested or enforced time or round number, or an arbitrary
predicate; the implementation can work as a black box. For example, a switching condition
could be a Root Partition round number range with soft enforcement — the responsible
validators will not receive any fees for their work outside the expected epoch.

The validator assignment type VA defines a tuple ({v, b,}., k.), where:

e {v,b,}2! — validator identifiers and stakes of type {(OCT*, Ng,)}. Validator identifiers v
refer to their public keys they sign validation messages with and stakes b, refer to the
amount of ALpHA tokens that are staked for them.

e k., —quorum size, measured in total amount of stake behind validator votes to reach
consensus. For the Root Partition, k > 2/3 > b,. For partitions / shards, k > 1/2 3 b,.
The value is represented in ALpHa tokens, typed as Ng,.

Transaction types: T = {addVar = 1} (add a validator assignment record)

8.5.3.2 Transactions

Add a Validator Assignment Record Records a new Validator Assignment Record for a
shard or a partition without shards. The input parameter A.g of type VAR is simply recorded
as a transaction processing result.

Transaction order T = {«, B8, t,addVar, A, Mc, P, s;) with A = (g), P = (s), where:

e A.g € VAR is the new validator assignment record;

e P.s e OCT" is the owner proof.
The transaction record of type TR contains the same data as the transaction order 7" and
additionally includes the server metadata Mg with the following constraints:

e Ms.f, = 0— actual fee charged is always 0.
e Ms.R = A.g —the argument A.g is recorded as the transaction processing result.

Transaction-specific validity condition:

Yiranse(T, S) =
T.. = NodelD(var, H(T.A.g.8,T.A.g.0)) A (
S.N[Ti]=L NTAge=0)V
(S.N[Tu]# L N T.Age=S.N[T.u].D.e+1)
) A
VerifyTxAuth(gere, T, T.P.s) = 1

That is,

November 29, 2024 126 /140

preliminary release

e T.. identifies a unit of type var, either new or pre-existing, and matches the partition
and shard,

e ifitis a freshly created unit, the epoch number will be 0,

o if the unit exists, the new epoch number is incremented by 1 from the previous valid
transaction with the unit, and

e the input s satisfies the predefined authority predicate.
Actions Action,gqvar:

1. if N[¢] = L then: Additem(t, (0))
2. N[T.].D.e — T.Ag.e

November 29, 2024 127 /140

preliminary release

A Bitstrings, Orderings, and Codes

A.1 Bitstrings and Orderings

By the topological ordering < of {0, 1}* we mean the irreflexive total ordering defined as
follows: ¢||0]lx < ¢ < ¢|[1|ly for all ¢, x, y in {0, 1}*.

For example, the subset {0, 1}<? is ordered as follows: {00 <0 <01 < || <10 <1 < 11}.

A.2 Prefix-Free Codes

A code is a finite subset C of {0, 1}*. A code C is prefix-free, if no codeword ¢ € € is an
initial segment of another codeword ¢’ € C, i.e. if ¢ € C, then c||c” ¢ € for every bitstring
¢’ e€{0,1}".

For every code C, the closure of € is the code C={ce{0,1}: Ac”: c||c’ € C), ie. €
consists of all possible prefixes (including ||) of the codewords of C.

A prefix-free code C is irreducible, if its closure C satisfies the following property. For every
c € C, either ¢ € C or both ¢||0, ¢||1 € C.

@ = {0,10,11)
€ =1{|,0,1,10,11}
U
0 1
10 11

Figure 26. Irreducible prefix free code C and its closure C.

November 29, 2024 128 /140

preliminary release

B Encodings

B.1 CBOR

Most data structures on the Alphabill platform are serialized in the Concise Binary Object
Representation (CBOR), as defined in the IETF RFC 89497.

For data to be hashed or signed, the deterministic encoding rules (as defined in Sec. 4.2
of the RFC 8949) must be used.

B.2 Bit-strings

Bit-strings are not directly supported in CBOR. On the Alphabill platform, a bit-string is
encoded as follows:

1. First, one 1-bit followed by zero to seven 0-bits are appended to the original bit-string
so that the total number of bits is a multiple of 8.

2. Then, the padded result is encoded as a CBOR byte-string in the left-to-right, highest-
to-lowest order.

For example, the 12-bit string ‘010110101111’ is first padded to the 16-bit string
'0101 10101111 1000°, which is then encoded as the 3-byte sequence 0x425af8:
0x42 byte-string, length 2
Ox5a the bits '0101 1010’
0xf8 the bits '1111’ and the padding '1000’

B.3 Time

Time is expressed as the number of milliseconds since 1970-01-01 00:00:00 UTC, encoded
as an unsigned integer: the time value for 1970-01-01 00:00:00.000 UTC is 0, the value for
1970-01-01 00:00:01.000 UTC is 1000, etc. All days are considered to be exactly 86 400
seconds long, ignoring any leap seconds that have occurred in the past.

During a leap second, the part corresponding to full seconds (up from the fourth digit in
decimal notation) is kept the same as during the previous second, but the part correspond-
ing to fractions of a second (the three lowest digits in decimal notation) is reset to zero and
counted up from there again. In other words, the value recorded for a time within a leap
second is the same as the value recorded for the time exactly one second earlier.

7https ://www.rfc-editor.org/rfc/rfc8949

November 29, 2024 129/140

https://www.rfc-editor.org/rfc/rfc8949

preliminary release

B.4 Identifiers

Identifiers of Nodes (validators) are expressed as hashes of compressed ECDSA public
keys; respective private key is controlled by the Node.

Identifiers of Transaction Systems are expressed as integers.

B.5 Cryptographic Algorithms

“ECDSA” denotes the Elliptic Curve Digital Signature Algorithm using P-256 (secp256k1)
curve, specified by NIST FIPS 186-4.

“SHA-256" denotes the SHA-2 hash algorithm with 256-bit output and “SHA-512” denotes
the SHA-2 hash algorithm with 512-bit output; both are specified by NIST FIPS 180-4.

The list is non-exhaustive.

November 29, 2024 130/140

preliminary release

C Hash Trees

C.1 Plain Hash Trees

C.1.1 Function PLAIN_TREE_ROOT

Computes the root value of the plain hash tree with the given n values in its leaves.
Input: L = (x1,...,x,) € H", the list of the values in the n leaves of the tree
Output: r € HU { L}, the value in the root of the tree

Computation:

function pLAIN_TREE_ROOT(L)
if n = 0 then > L =)
return L
else if n = 1 then > L ={x)
return x;
else
m « 2Uoz(=D] > Canonical tree
Lieft < (X1, .., Xpm)
Lright — (Xppats - o5 Xn)
return H(pLAIN_TREE_ROOT(Ljeft), PLAIN_TREE_ROOT(Lyignt))
end if
end function

Note that 2l°22*-Dl s the value of the highest 1-bit in the binary representation of n — 1,
which may be the preferred way to compute m in some environments. Splitting the leaves
this way results in a structure that allows the root of the tree to be computed incrementally,
without having all the leaves in memory at once.

C.1.2 Function PLAIN_TREE_CHAIN

Computes the hash chain from the i-th leaf to the root of the plain hash tree with the given
n values in its leaves.

Input:
1. L={xy,...,x,) € H", the list of the values in the n leaves of the tree
2. i e{l,...,n}, the index of the starting leaf of the chain

Output: C = ((b1,y1),...,(bs, o)) € (B x H)!, where y; are the sibling hash values on the
path from the i-th leaf to the root and b; indicate whether the corresponding y; is the right-

November 29, 2024 131 /140

preliminary release

or left-hand sibling

Computation:
function pLAIN_TREE_CHAIN(L; ©)
assert1 <i<n
if n =1 then > L =(x)
return ()
else
m « 2Uog(-D] > Must match pLAIN_TREE_RooT
Ligtt < (X1, ., Xp)
Lright — (Xmtts o o5 Xn)
if i < mthen
return pLAIN_TREE_CHAIN(Liest; i)||(0, PLAIN_TREE_ROOT(Lyignt))
else
return pLAIN_TREE_CHAIN(Lyignt; i — m)||(1, PLAIN_TREE_ROOT(Liett))
end if
end if
end function

C.1.3 Function PLAIN_TREE_OUTPUT
Computes the output hash of the chain C on the input x.

Input:

1. C ={(b1,y1),...,(bs,yo)) € (B x H)!, where y; are the sibling hash values on the path
from the i-th leaf to the root and b; indicate whether the corresponding y; is the right-
or left-hand sibling

2. x € H, the input hash value

Output: r € H, output value of the hash chain

Computation:

function pLaN_TRee_ouTpPuT(C; X)
if £ =0 then >C =)
return x
else
assert b, € B
if b, = 0 then
return H(pLAN_TREE_OUTPUT({(D1, V1), .-+, (Be_1,Ye-1)); X), Vi)
else
return H(y,, PLAIN_TREE_OUTPUT({(D1, Y1), ..., (Dr_1,Ye-1)); X))
end if
end if
end function

C.1.4 Inclusion Proofs

Plain hash trees can be used to provide and verify inclusion proofs. The process for this is
as follows:

November 29, 2024 132/140

e To commit to the contents of a list L = (x1,..., x,):

— Compute r « PLAIN_TREE_ROOT(L).

preliminary release

— Authenticate r somehow (sign it, post it to an immutable ledger, etc).

e To generate inclusion proof for x; € L:
— Compute C « PLAIN_TREE_CHAIN(L; 7).

e To verify the inclusion proof C = (b, y1), ..., (bs, y¢)) for x:

— Check that pLaIN_TRee_ouTpuT(C; x) = r, where r is the previously authenticated

root hash value.

C.2 Indexed Hash Trees

C.2.1 Function INDEX_TREE_ROOT

Computes the root value of the indexed hash tree with the given n key-value pairs in its

leaves.

1 3 7 9

10

Figure 27. Keys of the nodes of an indexed hash tree.

Input: List L = ((ky, x1), ..., (k,, x,)) € (KxH)", the list of the key-value pairs in the n leaves
of the tree; K must be a linearly ordered type and the input pairs must be strictly sorted in

this order, i.e. k; < ... <k,
Output: r € HU {_L}, the value in the root of the tree

Computation:

function INDEx_TREE_ROOT(L)

assertk; <...<k,

if n = 0 then
return L

else if n = 1 then
return H(1,k;, x1)

else
m < [n/2]
Ligtt < ((ky, x1), ..., (ks X))
Lright — <(km+1’ xm+1), s (kn’ xn))

return H(0, k,,, INDEX_TREE_ROOT(Ljeft), INDEX_TREE_ROOT(Lyight))

end if
end function

> L= ()

> L = ((ki, x1))

> Most balanced tree

November 29, 2024

133/140

preliminary release

C.2.2 Function INDEX_TREE_CHAIN

Considers the indexed hash tree with the given n key-value pairs in its leaves. If there is
a leaf containing the key k, computes the hash chain from that leaf to the root. If there is
no such leaf, computes the hash chain from the leaf where k should be according to the
ordering, which can be used as a proof of k’s absence.

Input:

1. L = {(ki,x1),..., ks, x,)) € (K xH)", the list of the key-value pairs in the n leaves of
the tree; K must be a linearly ordered type and the input pairs must be strictly sorted
in this order, i.e. k; < ... <k,

2. k € K, the key to compute the path for

Output: C = ((k1,y1), ..., ke, yo)) € (KxH)!, where k; are the keys in the nodes on the path
from the leaf to the root and y; are the sibling hash values

Computation:

function INDEX_TREE_CHAIN(L; k)
assertk; <...<k,

if n € {0, 1} then > L = orL=/{kg,x))
return L

else
m«— [n/2] > Must match INDEX_TREE_RoOOT

Lleft — <(k1’ .X]), e (kma xm)>
Lright — <(km+1’ xm+1),) (kna xn)>

if K < k,, then
return INDEX_TREE_GHAIN(Ligst; k)||(k;,, INDEX_TREE_ROOT(Lyight))
else
return INDEX_TREE_CHAIN(Lyight; K)[|(K,,, INDEX_TREE_ROOT(Lieft))
end if
end if

end function

C.2.3 Function INDEX_TREE_OUTPUT
Computes the output hash of the chain C on the input key k.
Input:

1. C = {(ki,y1),...,(ke,yo)) € (K x H), where k; are the keys in the nodes on the path
from the leaf to the root and y; are the sibling hash values

2. k € K, the input key
Output: r € HU {_L}, the value in the root of the tree

Computation:
function INbEx_TREE_oUTPUT(C'; k)

if £ = 0 then >C =)
return L
else if £ = 1 then > C = ((ki,y1))

November 29, 2024 134 /140

preliminary release

return H(1,k,,y,)

else
if kK < k, then
return H(O, k,, INDEX_TREE_OUTPUT({(k1, V1), - .., (Ke—1, Ye-1)); k), Ve)
else
return H(O, k;, y,, INDEX_TREE_OUTPUT({(k1, V1), .. ., (ke—1, Ye-1)); k)
end if
end if

end function

C.2.4 Inclusion and Exclusion Proofs

Indexed hash trees can be used to provide and verify both inclusion and exclusion proofs.
The process for this is as follows:
e To commit to the contents of a list L = ((ky, x1), ..., (k,, x,)) (Where k; < ... <k,):

— Compute r < INDEX_TREE_ROOT(L).
— Authenticate r somehow (sign it, post it to an immutable ledger, etc).

To generate inclusion proof for (k;, x;) € L:

— Compute C « INDEX_TREE_CHAIN(L; k;).

To verify the inclusion proof C = {(k{,y1), ..., (ke,y¢)) for (k, x):

— Check that inoex_Tree_output(C; k) = r, where r is the previously authenticated
root hash value.

— Check that (k, x) = (ki,y1), where (ky, y,) is the first pair in the list C.
To generate exclusion proof for k ¢ {ki,...,k,}:

— Compute C « INDEX_TREE_CHAIN(L; k).

To verify the exclusion proof C = {(ki, y1), ..., (kg, y¢)) for k:

— Check that iNnbex_Tree_output(C; k) = r, where r is the previously authenticated
root hash value.

— Check that k # k{, where (ky, y;) is the first pair in the list C.

November 29, 2024 135/140

preliminary release

D State File

State file consists of the following components:

e Header
e List of Node Records
e Checksum

D.1 Header

State file header consists of the following components:

a — network identifier of type A

B — partition identifier of type P
o — shard identifier of type {0, 1}57*

7 — unicity trust base of type UB

PP — partition description records of type PD[P] for all registered partitions (including
PDIB])

UC — unicity certificate for the round from which the state tree was exported

e m —the number of Node Records of type Ng,

D.2 Node Record

Node Record consists of the following components:

e (— unit identifier, of type I
e D —unit data, of type PD[S].D
e x — state hash, of type H

e (b1,y1),...,(bm,yn)) — the hash chain linking D and x to the root of the unit tree,
where b; are of type B and y; of type H

e hasLeft — existence of left child, of type B (1-exists, 0-does not exist)
e hasRight — existence of right child, of type B (1-exists, 0-does not exist)

Note that D and x are the final values at the end of the round and {(b1,y1),..., Dy, yim))
links them to the root hash of the unit tree as of at the end of the round. The earlier states
of the unit would be pruned as the first step of the next round, so these are omitted from
the state file. The hash chain is extracted as specified for CreateUnitTreeCert(c, IN[(].S|, N)
in Sec. 2.9.1.1.

November 29, 2024 136 /140

preliminary release

D.3 Checksum

Checksum of type N3, is the CRC32 of all contents (except the Checksum itself)

D.4 Writing (Serialization) Algorithm

For the serialization, given as input the state §, the following calls are made:

1. writeheader — writes out the file header based on the state S

2. traverse(S..,) — traverses the state tree, starting from the root, and writes out the
node records

3. addchecksum — computes and writes out the checksum

The function traverse(:) is defined as follows:

if t # O; then
traverse(N|[t]..p)
traverse(N|[t].tg)
writenode(N|[t])
end if

where writenode(N|[¢]) writes down a Node Record R with RhasLeft = (N[t]..; # Op),
RhasRight = (N[t]..g # 0p), R.x = N[t].Svpy.sp-x, and (b1, y1), ..., (bwm, ym)) @s specified in
Sec. 2.9.1.

D.5 Reading (Deserialization) Algorithm

The function S « readstate(File) is defined as follows (using N instead of S.N):

H < readHeader(File)
S <« NewState(H)
while R < readltem(File) do
Lt — R
NJ[t] <« NewNode(R)
if R.hasRight then
(N[t].tg, hg) < pop()
else
(N[t].tg, hg) < (Or, Og)
end if
if R.haslLeft then
(N[].tz, hy) < pop()
else
(N[t]tz, hy) < (Og, O)
end if
N[t].V « (S.PDIB].Fs)(SPDIB].Vs)N[t].D), N[N[t]..].V, N[N[t]..g]. V)
> Compute pre-pruning value of the sub-tree summary hash
hg < PLAIN_TREE_OUTPUT({(D1, Y1), - - - » (i, Yim))s H(R.x, H(D)))
h «— H(t,hg, N[t].V; hy, N[N[t].t,).V; hg, N[N[t].tg].V)
push((c, 1))
> Compute post-pruning value of the sub-tree summary hash

November 29, 2024 137 /140

preliminary release

N[t].S « {(L,R.x,N[t].D))

NJt].hy < pLAN_TREE_ROOT({H(R.x, H(N|[].D))))

N[t].h < H(t, N[t].hg, N[t].V; N[N[t].tz).h, N[N[t]..;].V; N[N[t].tg].h, N[N[t]..g].V)
end while
(Str, hy) < pop()
assert VerifyUnicityCert(H.UC) A h, = HUC.IR.h AN N[S.,].V = HUC.IR.v
return S

Here, the functions used by readstate are as follows:

e H « readHeader(File) — reads the header from the state file.

e § «— NewState(H) — stores the corresponding values from H as components of the
state S.

e R « readltem(File) — reads a node record R from the state file. It also indicates
whether there are any more node records in the file. The while-loop can be replaced
with a for-loop based on the m parameter of the header.

e N[¢] < newNode(R) — creates a new node N[:] and sets its data fields according to
the existing fields of the node record R.

e push, pop — standard stack operations, assuming that the stack is empty in the be-
ginning. In this specification, stack elements are of type I. In program code, stack
elements can be pointers to nodes.

November 29, 2024 138/140

Index

B (block), 40

C' (unicity seal), 21

Cshad (shard tree certificate), 19
s (state tree certificate), 18
CU"t (unit tree certificate), 17
CU"' (unicity tree certificate), 20
D (unit data (payload)), 34

IR (input record), 26

NJ¢] (state tree node), 34

T (transaction order), 15

T’ (transaction record), 16

UC (unicity certificate), 21

IT* (transaction execution proof), 24
1" (unit state proof), 22

B (partition identifier), 10

¢ (unit identifier), 13

7 (unicity trust base), 111

v (validator identifier), 42

o (shard identifier), 34

e (epoch number), 29

agent, 118

block, 40
genesis block, 41

certification request (CR), 29
certification response (CReS), 30
change record, 118

epoch, 106

fee credit record, 36

fee record (VF), 27

functions
block hash, 42
CompShardTreeCert, 19
CompStateTreeCert, 18
CompUnitTreeCert, 17
CreateBlock, 41

139

CreateShardTree, 28
CreateShardTreeCert, 19
CreateTxProof, 24
CreateUnicityTree, 28
CreateUnicity TreeCert, 20
CreateUnitStateProof, 22
fee credit functions, 36

PrndSh (generate pseudo-random

identifier), 33
RCompl, 38
Rinit, 37
VerifyBlock, 42
VerifyFeeAuth, 37
Verifylnc, 25
VerifyTxAuth, 37
VerifyTxProof, 24
VerifyUnicityCert, 21
VerifyUnitProof, 23

governance, 117
hash function, 12
orchestration, 117

partition, 10
permissioned partition, 119
PoS (Proof of Stake), 120

repeat UC, 77
root partition
distributed, 99
functional description, 30
monolithic, 97
root partition state, 29

shard
SH (sharding scheme), 13
shard info, 27

shard tree, 28

shard tree certificate, 19

state file, 136

state tree certificate, 18
statistical record (SR), 26
Sybil attack, 120

technical record (TE), 27
transaction

execution, 38

validation, 36
transaction execution proof, 24

transaction system, 10

unicity seal, 21

Unicity Tree, 28

unicity tree certificate, 20
computation, 20

unit ledger, 39

unit state proof, 22

unit tree certificate, 17

preliminary release

November 29, 2024

140/ 140

	General Description
	Purpose
	Alphabill Architecture

	Framework Data Structures
	Parameters, Types, Constants
	Parameters
	Types
	Constants

	Unit Identifiers
	Sharding Schemes
	Networks
	System Type and System Type Descriptor
	System Type Descriptor
	Standard System Types
	Partition Description Record

	Unit Type Identifiers
	Transaction Type Identifiers
	Transaction Orders and Records
	Certificates
	Unit Tree Certificate
	Creation: CreateUnitTreeCert
	Computation: CompUnitTreeCert

	State Tree Certificate
	Creation: CreateStateTreeCert
	Computation: CompStateTreeCert

	Shard Tree Certificate
	Creation: CreateShardTreeCert
	Computation: CompShardTreeCert

	Unicity Tree Certificate
	Creation: CreateUnicityTreeCert
	Computation: CompUnicityTreeCert

	Unicity Seal
	Unicity Certificate
	Verication: VerifyUnicityCert

	Proofs
	Unit State Proof
	Creation: CreateUnitProof
	Verification: VerifyUnitProof

	Transaction Execution Proof
	Creation: CreateTxProof
	Verification: VerifyTxProof
	Verify Inclusion: VerifyInc

	Root Partition
	Data Structures of the Root Partition
	Shard Input Record
	Statistical Record
	Fee Record
	Technical Record
	Shard Info
	Shard Tree
	Shard Tree Creation: CreateShardTree

	Unicity Tree
	Creation: CreateUnicityTree

	State of the Root Partition
	Messages of the Root Partition
	Certification Request
	Certification Response

	Functional Description of the Root Partition

	Base Partition Type
	Parameters
	Shard
	State of a Shard
	State Tree
	Node of the State Tree
	Invariants of the State Tree
	Unit Manipulation Functions

	Transaction Fees
	Fee Credit Records
	Fee Credit Manipulation Functions

	Valid Transaction Orders
	Validation Helper Predicates

	Execution Round
	Round Initialization: RInit
	Executing Transactions
	Round Completion: RCompl

	Unit Ledger
	Blocks
	Block of a Shard
	Genesis Block of a Shard
	Block Creation: CreateBlock
	Block Verification: VerifyBlock
	Block Hash: block_hash
	Block Size

	Money Partition Type
	Motivation and General Description
	Pure Bill Money Schemes
	Extended Bill Money Scheme
	Dust Collection
	Money Invariants

	Specification of the Money Partition
	Parameters, Types, Constants, Functions
	Transfer a Bill
	Split a Bill
	Lock a Bill
	Unlock a Bill
	Dust Collection
	Transfer to Dust Collector
	Swap with Dust Collector

	Fee Credit Management
	Transfer to Fee Credit
	Add Fee Credit
	Close Fee Credit
	Reclaim Fee Credit
	Lock a Fee Credit Record
	Unlock a Fee Credit Record

	Round initialization and completion
	Round Initialization: RInitmoney
	Round Completion: RComplmoney

	User-Defined Token Partition Type
	Motivation and General Description
	Specification
	General Parameters
	Notation

	Define a Fungible Token Type
	Define a Non-Fungible Token Type
	Mint a Fungible Token
	Mint a Non-Fungible Token
	Transfer a Fungible Token
	Transfer a Non-Fungible Token
	Lock a Token
	Unlock a Token
	Split a Fungible Token
	Join Fungible Tokens
	Burning Step
	Joining Step

	Update a Non-Fungible Token
	Fee Credit Handling
	Round initialization and completion
	Round Initialization: RInittoken
	Round Completion: RCompltoken

	Permissioned Mode
	Set Fee Credit
	Delete Fee Credit

	Alphabill Distributed Machine
	Background
	Definitions
	Scope
	Repeating Notation

	Partitions and Shards
	Timing
	Configuration and State
	Subcomponents
	Input Handling
	Block Proposal
	Validation and Execution
	Processing an Unicity Certificate and Finalizing a Block
	Processing a Block Proposal
	Ledger Replication

	Recovery Procedure
	Protocols – Shard Validators
	Protocol TransactionMsg – Transaction Order Delivery
	Protocol CR – Block Certification Request
	Protocol BlockCertificationResponse (CReS)
	Protocol Subscription – subscribing to CReS messages
	Protocol InputForwardMsg – Input Forwarding
	Protocol BlockProposalMsg – Block Proposal
	Protocol LedgerReplication – Ledger Replication

	Root Partition
	Summary
	Timing
	State
	Analysis
	Safety
	Liveness
	Data Availability

	Monolithic Implementation
	Certification Request Processing
	Unicity Certificate Generation

	Distributed Implementation
	Summary of Execution
	Peer Node Selection
	CR Validation
	Shard Quorum Check
	IR Change Request Validation
	Proposal Generation
	Proposal Validation
	State Signing
	UC Generation

	Proposal
	State Synchronization

	Atomic Broadcast Primitive
	Round Pipeline
	Pacemaker
	Leader Election

	Dynamic System
	Configuration Changes
	Root Partition Epoch Change
	Shard Epoch Change
	Controlling Shard Epochs
	Validator's life cycle
	Shard Validator, joining
	Shard Node, leaving
	Shard Node, ambiguous records
	Root Partition Node, joining
	Root Partition Node, leaving

	Dynamic Data Structures
	Versioning
	Evolving
	Monolithic, Static Root Partition
	Monolithic, Dynamic Root Partition
	Distributed, Static Root Partition
	Distributed, Dynamic Root Partition
	Signature Aggregation

	Root Partition Data Structures (illustrative)

	Orchestration
	Introduction
	Orchestration of the Dynamic Distributed Machine

	Data Flow
	Orchestration Partition
	Configuration Agent
	How a Validator joins a Partition

	Permissioned Partitions
	Root Partition

	Orchestration Mechanisms
	Proof of Authority
	Proof of Stake
	Tokenomics Toolbox

	Orchestration Processes
	Validator Assignment
	Partition Lifecycle Management
	Shard Management
	Incentive Payouts
	Gas Rate Multiplier
	Software and Version management
	On-chain Governance

	Proof of Authority Orchestration Partition Type
	Summary
	Motivation and General Description
	Specification of the Orchestration Partition
	Parameters, Types, Constants, Functions
	Transactions
	Add a Validator Assignment Record

	Bitstrings, Orderings, and Codes
	Bitstrings and Orderings
	Prefix-Free Codes

	Encodings
	CBOR
	Bit-strings
	Time
	Identifiers
	Cryptographic Algorithms

	Hash Trees
	Plain Hash Trees
	Function plain_tree_root
	Function plain_tree_chain
	Function plain_tree_output
	Inclusion Proofs

	Indexed Hash Trees
	Function index_tree_root
	Function index_tree_chain
	Function index_tree_output
	Inclusion and Exclusion Proofs

	State File
	Header
	Node Record
	Checksum
	Writing (Serialization) Algorithm
	Reading (Deserialization) Algorithm

	Index

