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Notation

A, B, . . . types
a ∈ A variable or constant a is of type A
Nk k-bit unsigned integers (0 . . . 2k − 1)
N±k k-bit signed integers (−2k−1 . . . 2k−1 − 1)
A[B] dictionaries with elements of type A indexed by indices of type B (or partial

functions from B to A)
a[b] = ⊥ dictionary a has no element with index b (or partial function a is not defined

on argument value b)
f : B→ A f is a total function from B to A
{0, 1}∗ the set of all finite length bitstrings, including the empty string denoted by

⌊⌋

{0, 1}k the set of all bitstrings of length k
{0, 1}≤k the set of all bitstrings of length ≤ k, including ⌊⌋
{0, 1}≥k the set of all bitstrings of length ≥ k
A∗ the class of all finite arrays of elements of type A, including the empty array
Ak the class of all arrays of length k of elements of type A
a[i] if a is of type A∗, then a[i] denotes the i-th element of a; numbering of

elements starts from 1
|a| if a is of type A∗, then |a| denotes the number of elements of type A in a;

a ∈ A|a|

a∥b concatenation of lists or bitstrings a and b
∧ logical AND operation
∨ logical OR operation
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1 General Description

1.1 Purpose

Alphabill Framework provides interoperability of all block-chained transactions systems of
certain general type.

Transaction systems that fit to Alphabill Framework have:

• units u, each unit having identifier ι, owner condition φ, and unit data D

• transactions that create new units, delete units, or change the data of the units

Alphabill Framework:

• defines language for describing the functionality of transaction systems: state and
transactions (syntax and semantics)

• provides libraries and toolkits for developing block-chained transaction systems in
Alphabill Framework

• based on descriptions of transaction systems, registers and assigns identifiers α to
transaction systems

• provides unicity certificate service for the registered transaction systems: unique
state root hash hα and transaction root hash hBα and summary value Vα for every pair
(n, α), where n is the round number of transaction system.

1.2 Alphabill Architecture

Based on Alphabill Framework, new Transaction Systems are defined. Transaction systems
are parameterized and instantiated as Partitions.

Partitions are decomposed into arbitrary number of Shards in order to meet performance
needs (Fig. 1).

All Shards and Partitions are implemented as a distributed machine in order to meet de-
centralization and availability needs.

The security of Alphabill system is intrinsic to the architecture.
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Shard

ABMoney Partition

Shard... Shard Shard... Shard Shard... Shard Shard...

Root Chain

Atomicity Partition Partition X Partition Y

Figure 1. Alphabill functional model
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2 Framework Data Structures and Functions

2.1 Parameters, Types, Constants, Functions

2.1.1 Parameters

sidlen = 32 – system identifier length (global)
tidlen – unit type identifier length of type N (per transaction system)
uidlen – unit identifier length of type N (per transaction system)

2.1.2 Types

A = Nsidlen – system identifiers
IT = {0, 1}tidlen – unit type identifiers
IU = {0, 1}uidlen – unit identifiers
I = IU × IT = {0, 1}uidlen+tidlen – extended identifiers, combining the type and the unit identi-
fiers
L – owner condition type (represents byte-codes of ownership conditions)
H – hash value type
B – unicity trust base type
SP – unit (state) proof type
XP – transaction (execution) proof type
T – transaction type identifiers
TO – abstract transaction order type, including union of transaction attributes over all valid
transaction types, client-side metadata, and authorization proofs
TR – abstract transaction record type, including union of transaction attributes over all valid
transaction types, client-side metadata, authorization proofs, and server-side metadata
MC – client-side transaction metadata type
MS – server-side transaction metadata type
SD – system description type
U – unicity seal type
SH – sharding scheme type
CS – state tree certificate type
CU – unit tree certificate type

2.1.3 Constants

0I – zero identifier of type I
0H – zero-hash of type H
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2.1.4 Functions

H – hash function of type {0, 1}∗ → H
VerifyUnicitySeal – unicity seal verification function of type H × U × B→ {0, 1}
VerifyOwner – ownership verification function of type L × TO × {0, 1}∗ → {0, 1}, where the
last argument is the input to satisfy the owner condition (a common example is a digital
signature to be verified with a public key embedded in the owner condition)
VerifyUnitProof – unit proof verification function of type SP × B × SD→ {0, 1}
VerifyTxProof – transaction proof verification function of type XP × TR × B × SD→ {0, 1}

2.2 Unit Identifiers

The structure of extended identifiers in a partition’s state tree is defined by two parameters:
tidlen – the type identifier length
uidlen – the unit identifier length

The extended identifiers are the concatenation of the unit identifier part and the type iden-
tifier part, with the unit identifier in the uidlen most significant bits and the type identifier in
the tidlen least significant bits of the extended identifier.

We also define the following convenience functions:
ExtrUnit : I→ IU that extracts the unit identifier part from an extended identifier
ExtrType : I→ IT that extracts the type identifier part from an extended identifier
NodeID : IT × IU→ I that combines the type and unit identifiers into an extended identifier

For ordering, identifiers are compared lexicographically.

2.3 System Description Record

Every transaction system registered in the Alphabill Framework with system iden-
tifier α is described by a data structure SD[α] of type SD that is a tuple
(tidlen, uidlen,U,D,V,V0, FS ,VS , γ,V, FC, ιFC), where:

1. tidlen – unit type identifier length

2. uidlen – unit identifier length

3. U – list of known unit type identifiers

4. D – abstract unit data type (union of unit data types for all known unit types)

5. V – summary value type

6. V0 – summary value of the data related to the unit with zero-identifier 0I
7. FS – node summary function of type (V ∪ {⊥}) × V × V→ V

8. VS – data summary function of type D→ V

9. γ – summary check predicate of type V × V→ {0, 1}

10. V – summary trust base of type V

11. FC – transaction cost function of type TO × S→ N64

12. ιFC – identifier of the bill in the money partition that represents the fee credits users
have in this transaction system not yet paid out to the validators
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Table 1. System description record.

No Field Notation Type
1. Type identifier length tidlen N

2. Unit identifier length uidlen N

3. Valid unit types U ({0, 1}tidlen)∗

4. Unit data type D

5. Summary value type V

6. Summary value of the data related to
the unit with zero-identifier 0I

V0 V

7. Node summary function FS (V ∪ {⊥}) × V × V→ V
8. Data summary function VS D→ V

9. Summary check predicate γ V × V→ {0, 1}
10. Summary trust base V V

11. Transaction cost function FC TO × S→ N64

12. Fee credit bill identifier ιFC I

2.4 Transaction Orders and Records

A transaction order is a tuple P = ⟨(α, τ, ι, A,MC), s, s f ⟩, with MC = (T0, fm, ι f ), where:

1. α – system identifier of type A

2. τ – transaction type identifier of type T

3. ι – unit identifier of type I

4. A – transaction attributes of type ATτ
5. MC – client metadata for the transaction, of typeMC, consisting of

5.1 T0 – timeout of type N64

5.2 fm – maximum fee the user is willing to pay for the execution of this transaction,
of type N64

5.3 ι f – optional identifier of the fee credit record of type I

6. s – owner proof of type {0, 1}∗

7. s f – optional fee authorization proof of type {0, 1}∗ (omitted when the main owner
proof s also satisfies the fee owner condition)

Each transaction order P has an associated set of target units targets(P). In most cases
targets(P) = {P.ι}, but some transaction orders target multiple units. Such cases are high-
lighted in the sections defining those transaction types.

A transaction record is a transaction order with server-side metadata added to it. More
formally, it is a tuple P′ = ⟨P,MS ⟩, with P a transaction order as defined above and MS =

( fa, r,R), where:

1. MS – service metadata for the transaction, of typeMS, consisting of

1.1 fa – actual fee charged for the processing of this transaction
1.2 r – indicates whether the transaction was executed successfully; currently only

successful transactions (with MS .r = 1) are recorded in blocks; however, in the
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future also unsuccessful transactions (with MS .r = 0) may be recorded and
charged for

1.3 R – optional processing result details, of type RTτ

Table 2. Fields of a transaction order.

No Field Notation Type
1. System identifier α A

2. Transaction type identifier τ T

3. Unit identifier ι I

4. Transaction attributes A ATτ
5. Timeout MC.T0 N64

6. Maximum transaction fee MC. fm N64

7. Fee credit record identifier MC.ι f I ∪ {⊥}

8. Owner proof s {0, 1}∗

9. Fee authorization proof s f {0, 1}∗ ∪ {⊥}

Table 3. Fields of a transaction record.

No Field Notation Type
1. System identifier α A

2. Transaction type identifier τ T

3. Unit identifier ι I

4. Transaction attributes A ATτ
5. Timeout MC.T0 N64

6. Maximum transaction fee MC. fm N64

7. Fee credit record identifier MC.ι f I ∪ {⊥}

8. Owner proof s {0, 1}∗

9. Fee authorization proof s f {0, 1}∗ ∪ {⊥}
10. Actual transaction fee MS . fa N64

11. Success indicator MS .r {0, 1}
12. Processing details MS .R RTτ

2.5 Unicity Tree and Unicity Certificate

2.5.1 Unicity Tree Certificate

Unicity Tree Certificate is a tuple Cuni = (α, dhash; hs
1, . . . , h

s
sidlen), where:

1. α – system identifier of type A

2. dhash – system description hash of type H

3. hs
1, . . . , h

s
sidlen – sibling hashes of type H

2.5.2 Unicity Seal

Unicity Seal is a tuple Cr = (nr, tr, r−, r; s), where:
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1. nr – Root Chain Round number

2. er – Root Chain Epoch number

3. tr – Round creation time (wall clock value specified and verified by the Root Chain),
with one-second precision. See Appendix B for encoding

4. r− – Root hash of previous round’s Unicity Tree

5. r – Root hash of Unicity Tree (denoted as rroot if necessary for clarity)

6. s – Signature, computed by the Root Chain over preceding fields (s =

Signskr
(nr, er, tr, r−, r)). The formulation of signature field depends on underlying con-

sensus mechanism and its parameters. Here we assume an opaque data structure
which can be verified based on the Unicity Trust Base, i.e., there is an implementation
of an abstract function VerifyT ((nr, er, tr, r−, r), s), encapsulated into the implementa-
tion of VerifyUnicitySeal.

2.5.3 Unicity Certificate

Unicity Certificate is a tuple UC = (IR,Cuni,Cr). In some contexts it may include a shard
certificate: (Cshard, IR,Cuni,Cr). Elements of the tuple form an authenticated chain, e.g., the
verification of fields in IR looks like:

• r ← CompUnicityTreeCert(Cuni, IR)

• 1 = VerifyUnicitySeal(r,Cr,T ).

2.6 State Tree and Unit State Proof

2.6.1 State Tree Certificate

State Tree Certificate Cstate consists of the following components:

1. An initial tuple (hL,VL; hR,VR)

2. A list of tuples (ι1, z1,V1; hs
1,V

s
1), . . . , (ιm, zm,Vm; hs

m,V
s
m)

See Sec. 4.11 for more details.

2.6.2 Unit Tree Certificate

Unit Tree Certificate Cunit consists of the following components:

1. An initial tuple (t, s)

2. A list of tuples (b1, y1), . . . , (bm, ym)

See Sec. 4.10 for more details.

2.6.3 Unit State Proof

Unit State Proof is a tuple Πunit = (ι, x−,Cunit,V0,Cstate,UC), where:

1. ι – extended identifier of the unit, of type I

2. x− – previous state hash of type H ∪ {⊥}
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3. Cunit – unit tree certificate

4. V0 – data summary of type SD.V

5. Cstate – state tree certificate

6. UC – unicity certificate

Creation and verification of unit state proofs is specified in Sec. 2.8.4 and 2.8.5.

2.7 Transaction Execution Proof

Transaction Execution Proof for a transaction record P is a tuple Πtx = ⟨hh,C,UC⟩, where:

1. hh – hash of block header fields

2. C – block tree hash chain

3. UC – unicity certificate

Transaction proof creation and verification is specified in Sec. 2.8.6 and 2.8.7.

2.8 Functions

2.8.1 Compute Unicity Tree Certificate: CompUnicityTreeCert

Input:

1. (α, dhash; hs
1, . . . , h

s
sidlen) – unicity tree certificate

2. IR – Input Record

Output: Root hash r of type H

Computation:
r ← H(IR, dhash)
for i← sidlen downto 1 do

if αi = 0 then r ← H(r, hs
i )

if αi = 1 then r ← H(hs
i , r)

end for
return r

2.8.2 Compute State Tree Certificate: CompStateTreeCert

Input:

1. ι – unit identifier of type I

2. z0 – unit tree root hash of type H

3. V0 – unit summary value of type SD.V

4. Cstate = ⟨(hL,VL; hR,VR); (ι1, z1,V1; hs
1,V

s
1), . . . , (ιm, zm,Vm; hs

m,V
s
m)⟩ – state tree certifi-

cate of type CS

5. SD – system description of type SD
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Output: A pair (h,V), where h is the state tree root hash of type H and V is the state tree
summary value of type SD.V

Computation:
V ← SD.FS (V0,VL,VR)
h← H(ι, z0,V; hL,VL; hR,VR)
for i← 1 to m do

if ι < ιi then
V ′ ← SD.FS (Vi,V,V s

i )
h← H(ιi, zi,V ′; h,V; hs

i ,V
s
i )

else
V ′ ← SD.FS (Vi,V s

i ,V)
h← H(ιi, zi,V ′; hs

i ,V
s
i ; h,V)

end if
V ← V ′

end for
return (h,V)

2.8.3 Compute Unit Tree Certificate: CompUnitTreeCert

Input:

1. x− – hash value of type H

2. Cunit = ⟨(t, s); (b1, y1), . . . , (bm, ym)⟩ – unit tree certificate of type CU

Output: The state tree root hash value of type H

Computation:
z← H(H0(x−, t), s) ▷ H0 defined in Sec. 4.9
return plain_tree_output(⟨(b1, y1), . . . , (bm, ym)⟩; z) ▷ Sec. C.1.3

2.8.4 Create Unit Proof: CreateUnitProof

Input:

1. ι – unit identifier to generate proof for

2. i – index of the intermediate state within the round to generate proof for

3. N – state tree

4. ιr – root node of the state tree

5. UC – Unicity Certificate

6. SD – system description record

Output: Unit State Proof Πunit of type SP

Computation:
assert 1 ≤ i ≤ |N[ι].S |
if i > 1 then

x− ← N[ι].S i−1.x ▷ Existing unit was updated by a transaction
else if N[ι].S 1.t = ⊥ then
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x− ← N[ι].S 1.x ▷ Initial state was copied from previous round
else

x− ← ⊥ ▷ Unit was created, no previous state
end if
Cunit ← CreateUnitTreeCert(ι, i,N) ▷ Sec. 4.10.2
Cstate ← CreateStateTreeCert(ι,N, ιr,SD) ▷ Sec. 4.11.2
return (ι, x−,Cunit,N[ι].V,Cstate,UC)

2.8.5 Verify Unit Proof: VerifyUnitProof

Input:

1. Πunit = (ι, x−,Cunit,V0,Cstate,UC) – unit proof

2. T – trust base

3. SD – system description of type SD

Output: True or False

Computation:
z← CompUnitTreeCert(x−,Cunit)
(h, v)← CompStateTreeCert(ι, z,V0; Cstate,SD)
r ← CompUnicityTreeCert(UC.Cuni,UC.IR)
return UC.Cuni.dhash = H(SD) ∧ VerifyUnicitySeal(r,UC.Cr,T )

∧ γ(V,SD.V) ∧ UC.IR.h = h ∧ UC.IR.v = v

Note that a unit state proof Π can be used to prove and verify several different claims
about a unit. Using the notation that the state tree certificate Cstate in the unit proof is
⟨(hL,VL; hR,VR); (ι1, z1,V1; hs

1,V
s
1), . . . , (ιm, zm,Vm; hs

m,V
s
m)⟩ and the unit tree certificate Cunit is

⟨(t, s); (b1, y1), . . . , (bm, ym)⟩, we can express the following conditions:

1. At some point during the round n, the unit ι had the bearer predicate φ and data D:

VerifyUnitProof(Π,T ,SD) = 1 ∧
Π.ι = ι ∧ Π.UC.IR.n = n ∧

Π.Cunit.s = H(φ,D).

2. At some point during the round n, the unit ι had the transaction in the record P′

applied to it:

VerifyUnitProof(Π,T ,SD) = 1 ∧
Π.ι = ι ∧ Π.UC.IR.n = n ∧

Π.Cunit.t = H(P′).

3. At some point during the round n, the unit ι had the transaction in the record P′

applied to it and this set the unit’s bearer predicate to φ and data to D (essentially the
conjunction of the two previous conditions):

VerifyUnitProof(Π,T ,SD) = 1 ∧
Π.ι = ι ∧ Π.UC.IR.n = n ∧

Π.Cunit.t = H(P′) ∧ Π.Cunit.s = H(φ,D).
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4. The state of the unit ι did not change from the beginning of round n1 to the end of
round n2:

VerifyUnitProof(Π1,T ,SD) = 1 ∧
Π1.ι = ι ∧ Π1.UC.IR.n = n1 ∧

Π1.Cunit.b1 = Π1.Cunit.b2 = . . . = Π1.Cunit.bm = 0 ∧
VerifyUnitProof(Π2,T ,SD) = 1 ∧
Π2.ι = ι ∧ Π2.UC.IR.n = n2 ∧

Π2.Cunit.b1 = Π2.Cunit.b2 = . . . = Π2.Cunit.bm = 1 ∧

Π1.x− = Π2.x− ∧ Π2.Cunit.t = ⊥.

5. The unit ι did not exist at the end of round n:

VerifyUnitProof(Π,T ,SD) = 1 ∧ Π.UC.IR.n = n ∧
(ι < Π.ι ∧ Π.hL = 0H ∨ ι > Π.ι ∧ Π.hR = 0H) ∧
(ι < Π.Cstate.ι1 ∧ Π.ι < Π.Cstate.ι1 ∨ ι > Π.Cstate.ι1 ∧ Π.ι > Π.Cstate.ι1) ∧
(ι < Π.Cstate.ι2 ∧ Π.ι < Π.Cstate.ι2 ∨ ι > Π.Cstate.ι2 ∧ Π.ι > Π.Cstate.ι2) ∧
. . .

(ι < Π.Cstate.ιm ∧ Π.ι < Π.Cstate.ιm ∨ ι > Π.Cstate.ιm ∧ Π.ι > Π.Cstate.ιm).

2.8.6 Create Transaction Proof: CreateTxProof

Input:

1. B = ⟨(α, σ, h−, ν); P1, . . . , Pk; UC⟩ – block

2. i – index of the transaction to generate proof for

Output: Transaction Execution Proof Πtx of type XP

Computation:
assert 1 ≤ i ≤ k
hh ← H(α, σ, h−, ν)
C ← plain_tree_chain(⟨H(P1), . . . ,H(Pk)⟩, i) ▷ Sec. C.1.2
return (hh,C,UC)

2.8.7 Verify Transaction Proof: VerifyTxProof

Input:

1. Πtx = (hh,C,UC) – transaction proof

2. P – transaction record

3. T – trust base

4. SD – system description of type SD

Output: True or False

Computation:
h← plain_tree_output(C,H(P)) ▷ Sec. C.1.3
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h← H(hh, h)
r ← CompUnicityTreeCert(UC.Cuni,UC.IR)
return UC.Cuni.dhash = H(SD) ∧ VerifyUnicitySeal(r,UC.Cr,T )

∧ UC.IR.hB = h
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3 Root Partition

3.1 State of the Root Partition

State of the root partition is a tuple (n, e,T ,A,H ,SD), where:

1. n – round number of type N64

2. e – epoch number of type N64

3. T – unicity trust base of type B

4. A – set of system identifiers, with elements of type A

5. N – round numbers nα of the registered transaction systems (type: A → N64)

6. H – last-certified root hashes hα of the registered transaction systems (type: A → H)

7. SD – system descriptions of type SD[A] for all registered transaction systems

Epoch number can be interpreted as the version number of some partition’s configuration.
It is used by supporting layers like governance and consensus. On static configuration, the
epoch is 0.

Table 4. State of the root partition.

No Field Notation Type
1. Round number of the root partition n N64

2. Epoch number of the root partition e N64

3. Unicity trust base T B

4. Registered system identifiers A Subset of A
5. Round numbers N A → N64

6. Last-certified root hashes H A → H

7. System descriptions SD SD[A]

3.2 System Input Record

System input record (IR) of a transaction system is a tuple (n, e, h′, h, v, hB, fB), where:

1. n – transaction system’s round number of type N64

2. e – transaction system’s epoch number of type N64

3. h′ – previous round’s root hash of type H

4. h – current round’s root hash of type H
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5. v – summary value of the current round; type V∗, where V∗ = ∪α∈ASD[α].V

6. hB – hash of the block B computed over all fields except certificates, type H; compu-
tation is specified by the function block_hash()

7. fB – sum of the actual fees over all transaction records in the block, of type N64

The field descriptions above apply to a committed (certified) Input Record. In the state
certification request, the fields are interpreted as follows: h′ - root hash to be extended
(that is, of the last certified round), h, v, hB - values proposed for certification and n is
incremented for the proposed round.

3.3 Unicity Tree and Unicity Tree Certificate

Let A ⊆ A be the set of system identifiers of the registered transaction systems, i.e. A =
{α ∈ A : SD[α] , ⊥}.

Let IR be system input records of type (N64 ×N64 ×H×H×V
∗ ×H×N64)[A], i.e. for every

α ∈ A, either IR[α] = (nα, eα, h′α, hα, vα, hBα , fBα), or IR[α] = ⊥.

LetA be the closure ofA as a prefix-free code (Appendix A). This means that, by definition,
A = {α ∈ {0, 1}∗ : ∃c ∈ {0, 1}∗ : αc ∈ A}.

Unicity tree is a sparse Merkle tree, i.e. a function of type A → H such that:

• If α ∈ A, then χ(α) = H(IR[α]∥H(SD[α])), where we assume that ⊥∥H(SD[α]) =
H(SD[α]);

• if α ∈ A\A and α0 < A, then χ(α) = H(0H∥χ(α1)),

• if α ∈ A\A and α1 < A, then χ(α) = H(χ(α0)∥0H),

• for any other α ∈ A: χ(α) = H(χ(α0)∥χ(α1)).

3.4 Functions of the Root Partition

3.4.1 Create Unicity Tree: CreateUnicityTree

Input:

1. A – set of system identifiers of type A

2. SD – system description of type SD[A]

3. IR – system input records of type (N64 × N64 × H × H × V
∗ × H × N64)[A], where

h′α = H[α], whenever IR = (nα, eα, h′α, hα, vα, hBα , fBα) , ⊥

Output: χ – unicity tree of type A → H

Computation: gentree(⌊⌋)

where gentree is the following recursive function of type {0, 1}∗ → H with side effects:

gentree(α):

1. if α ∈ A, then store χ(α)← H(IR[α]∥H(SD[α])) and return χ(α)

2. else if α ∈ A\A and α0 < A, then store χ(α)← H(0H∥gentree(α1)) and return χ(α)
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3. else if α ∈ A\A and α1 < A, then store χ(α)← H(gentree(α0)∥0H) and return χ(α)

4. else store χ(α)← H(gentree(α0)∥gentree(α1)) and return χ(α)

3.4.2 Create Unicity Tree Certificate: CreateUnicityTreeCert

Input:

1. α – system identifier of type A

2. χ – unicity tree of type A → H

3. SD – system description of type SD[A]

Output: unicity tree certificate (α, dhash; hs
1, . . . , h

s
sidlen)

Computation:
dhash← H(SD[α])
for i← 1 to sidlen do

hs
i ← χ(α1α2 . . . αi−1αi)

end for
return (α, dhash; hs

1, . . . , h
s
sidlen)

where α1α2 . . . αsidlen is the binary representation of α, and αi is the Boolean inverse of αi
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4 Generic Transaction System

4.1 Parameters

Every (shard of a) transaction system in the Alphabill network is completely defined by the
following parameters:

1. α – system identifier of type A

2. SD[α] = (tidlen, uidlen,U,D,V, FS ,VS , γ,V, FC) – system description of type SD

3. SH – sharding scheme of type SH

4. σ ∈ SH – shard identifier

5. PrndSh – function of type IU × {0, 1}∗ → IU such that fSH (PrndSh(ι, X)) = fSH (ι) for
every ι and X

6. S 0 – initial state of type S = A × {0, 1}∗ × SH × N64 × I × ND[I] × B × SD[A], where
ND = ((H∪ {⊥})×H× L×D)∗ ×H× L×D×V×H× I× I×N32 ×N

±
8 is the node type

7. RInit – round initialization procedure of type S→ S

8. RCompl – round completion procedure of type S→ S

9. T – transaction identifier type (a finite set)

10. For every τ ∈ T:

10.1 ATτ – attributes type

10.2 TOτ = (A×T× I×ATτ×MC)×{0, 1}∗× ({0, 1}∗∪{⊥}) – derived transaction order
type

10.3 TRτ = TOτ ×MS – derived transaction record type

10.4 ψτ – predicate of type TOτ × S→ {0, 1}

10.5 Actionτ – function of type TOτ × S→ S

Desirable features of the PrndSh function are:

1. Collision resistance – infeasibility of finding X , X′ and ι such that PrndSh(ι, X) =
PrndSh(ι, X′)

2. Uniformity – for any ι, and sufficiently large n, if X ← {0, 1}n is uniformly distributed
in {0, 1}n, then the probability distribution PrndSh(ι, X) is indistinguishable from the
uniform distribution on the set {ι′ ∈ IU : fSH (ι′) = fSH (ι)}

For interoperability between different implementations, PrndSh is defined as

PrndSh(ι, X) = σ1σ2 . . . σℓχℓ+1χℓ+2 . . . χuidlen ,
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where σ1σ2 . . . σℓ is the binary representation of fSH (ι) and χ1χ2 . . . χuidlen is the output of
a collision-resistant hash function H∗ : {0, 1}∗ → {0, 1}uidlen. In other words, PrndSh(ι, X) is
H∗(X) with the leftmost bits replaced with those of fSH (ι).

The function H∗ in turn should be constructed from a collision-resistant hash function H with
k-bit outputs (H : {0, 1}∗ → {0, 1}k) by taking H∗(X) = h0

1h0
2 . . . h

0
kh1

1h1
2 . . . h

1
k . . . h

m
1 hm

2 . . . h
m
i ,

where uidlen = m · k + i with 1 ≤ i ≤ k and h j
1h j

2 . . . h
j
k is the binary representation of H(X, j).

In other words, H∗(X) is the uidlen leftmost bits of the concatenation H(X, 0)∥H(X, 1)∥ . . .

4.2 Sharding Scheme

Sharding scheme SH : SH is an irreducible prefix-free code (Appendix A).

If SH = {⌊⌋}, then there is a single shard.

In the description of a sharding scheme, the shard identifiers are listed in the topological
order σ1 ≺ σ2 ≺ . . . ≺ σn (Appendix A).

Every sharding scheme SH induces a sharding function fSH : I → SH . The shard fSH (ι)
responsible for handling the unit ι is the shard whose identifier σi is a prefix of ι. With SH
an irreducible prefix-free code, there is exactly one such σi.

4.3 Core

4.3.1 State of the Core

State of the Core of a transaction system is a tuple (α,SH , n,SD), where:

1. α – system identifier of type A
2. SH – sharding scheme of type SH
3. n – round number of type N64

4. e – epoch number of type N64

5. SD – system descriptions of type SD[A] for all registered transaction systems (in-
cluding SD[α])

4.3.2 Shard Tree

Shard tree is a function χ : SH → H × V such that:

1. If σ ∈ SH , then χ(σ) = (hσ,Vσ), where (hσ,Vσ) is the output of CompStateTreeCert
in shard σ.

2. If σ ∈ SH\SH , then χ(σ) = (H(σ, 0H, ∅; h0,V0; h1,V1), FS (∅,V0,V1)), where (h0,V0) =
χ(σ∥0) and (h1,V1) = χ(σ∥1).

4.3.3 Shard Certificate

Shard certificate is a sequence (s1, hs
1,V

s
1), . . . , (sm, hs

m,V
s
m), where:

1. si – a bitstring of type {0, 1}m−i

2. hs
i – sibling hash value of type H

3. V s
i – sibling summary value of type SH[α].V
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4.3.4 Shard Certificate Creation: CreateShardCert

Input:

1. SH – sharding scheme

2. σ – shard identifier

3. χ – shard tree of type χ : SH → H × V

Output: shard tree certificate Cshard = ((s1, hs
1,V

s
1), . . . , (sm, hs

m,V
s
m))

Computation:
m← |σ|
Cshard ← ()
for i← m downto 1 do

(hs
i ,V

s
i )← χ(σ1σ2 . . . σi−1σi)

Cshard ← Cshard∥(σ1σ2 . . . σi−1, hs
i ,V

s
i )

end for
return Cshard

where σ1σ2 . . . σm is the binary representation of σ, and σi is the binary complement of σi.

4.4 Shard

4.4.1 State of a Shard

State of a (shard of a) transaction system is a tuple (α, σ,SH , n, e, ιr,N,T ,SD), where:

1. α – system identifier of type A

2. σ – shard identifier of type {0, 1}≤SD[α].uidlen

3. SH – sharding scheme of type SH

4. n – round number of type N64

5. e – epoch number of type N64

6. ιr – root node identifier of type I

7. N – state tree of type ND[I], i.e. a node N[ι] of type ND is assigned to some identi-
fiers ι of type I

8. T – unicity trust base of type B

9. SD – system descriptions of type SD[A] for all registered transaction systems (in-
cluding SD[α])

4.4.2 Node of the State Tree

Node N[ι] of type ND is a tuple (S , hs, φ,D,V, h, ιL, ιR, d, b), with S = (S 1, S 2, . . . , S n) and
S i = (ti, xi, φi,Di), where:

1. S – log of state changes of the unit during the current round, with each record S i

consisting of

1.1 ti – the hash of the record of the transaction that brought the unit to the state
described in S i, of type H ∪ {⊥}
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Table 5. State of a transaction system.

No Field Notation Type
1. System identifier α A

2. Shard identifier σ {0, 1}≤SD[α].uidlen

3. Sharding scheme SH SH

4. Round number n N64

5. Epoch number e N64

6. Root node identifier ιr I

7. State tree N ND[I]
8. Unicity trust base T B

9. System descriptions SD SD[A]

1.2 xi – the new head hash of the unit ledger, of type H

1.3 φi – the new bearer condition of type L

1.4 Di – the new unit data of type D

2. hs – root value of the hash tree built on the state log S

3. φ – current bearer condition of type L

4. D – current unit data of type D

5. V – summary value of the sub-tree rooted at this node, of type V

6. h – summary hash of the sub-tree rooted at this node, of type H

7. ιL – left child node identifier of type I

8. ιR – right child node identifier of type I

9. d – depth of the subtree of type N32

10. b – balance factor of type N±8

Table 6. Node of the State Tree.

No Field Notation Type
1. Transaction record hash ti = S i.t H ∪ {⊥}

2. New unit ledger hash xi = S i.x H

3. New bearer condition φi = S i.φ L

4. New unit data Di = S i.D D

5. State log hash hs H

6. Current bearer condition φ L

7. Current unit data D D

8. Subtree summary value V V

9. Subtree summary hash h H

10. Left child node identifier ιL I

11. Right child node identifier ιR I

12. Depth of the subtree d N32

13. Balance factor b N±8
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4.4.3 Invariants of the State Tree

Definitions for the node with identifier 0I:

N[0I].V = V0

N[0I].h = 0H
N[0I].d = 0

For ι , 0I and N[ι] = (S , hs, φ,D,V, h, ιL, ιR, d, b) , ⊥:

xi = H0(xi−1, ti) for all i ∈ {2, . . . , |S |} (Sec. 4.9)

hs = plain_tree_root(⟨z1, . . . , z|S |⟩), where zi = H(xi,H(φi,Di))

φ = φ|S |

D = D|S |
V = FS (Vs(D),N[ιL].V,N[ιR].V)

h = H(ι, hs,V; N[ιL].h,N[ιL].V; N[ιR].h,N[ιR].V)

d = max{N[ιL].d,N[ιR].d} + 1

b = N[ιR].d − N[ιL].d

If N[ι] = ⊥, then we define N[ι].φ ≡ 1 i.e. owner conditions for non-existing items are true.

This default value is important for unit-creating transactions, where the owner condition
of the newly created item is not yet defined. The validity of unit-creating transactions are
defined by other parameters, such as ψτ (see the validity conditions of transaction types).

4.5 Fee Credit Records

Fees provide the incentive for the validators to process transactions and thus effectively run
the partitions. All fees in all Alphabill partitions are handled in the Alphabill native currency.
The fees are expected to be low compared to the values of the transactions themselves
and therefore a more lightweight credit balance based system is used to handle them.

The general process for fee payments consists of three phases:

• To prepare to transact on an application partition, the user first executes a special
“transfer to fee credit” transaction on the money partition and presents a proof of the
transaction to the application partition in order to obtain or top up a fee credit balance.

• Executing transactions on the application partition, the user gradually spends their
fee credit.

• For each block, the application partition reports the sum of earned transaction fees to
the root chain; based on that information, a governance process periodically issues
payment orders on the money partition to pay out the fees earned to the application
partition validators.

To facilitate the above process, each application partition maintains a fee credit record for
each user who has obtained a fee credit balance on that partition. Fee credit records are
stored in the state tree of the application partition as nodes of a dedicated type with the
node data D = (b, λ, ℓ, t), where:
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1. b – current balance, of type N±64; the value is represented in fixed point format
with 8 fractional decimal digits; this means that a balance of 1 Alpha is stored as
b = 100000000 and b = 123 represents 0.00000123 Alpha; for consistency, all user
interfaces should display all credit balances with 8 digits after the decimal point

2. λ – hash of the last “add fee credit”, “close fee credit”, “lock fee credit”, or “unlock
fee credit” operation that targeted this record, of type H; note that spending fee credit
when executing other transactions does not affect this “backlink” value

3. ℓ – lock status of the record, of type N64; allows locking of the record at the beginning
of a multi-step protocol that needs the record to remain unmodified by other transac-
tions during the protocol execution; ℓ = 0 means the record is not locked, any other
value means it’s locked; note that locking a record does not prevent spending the
credit on the record to process transactions, it only applies to user-initiated actions
like adding or reclaiming fee credits

4. t – the earliest time when this record may be “garbage collected” when the balance
goes to zero, expressed as the round number of type N64

Table 7. Fee Credit Record.

No Field Notation Type
1. Current balance b N±64
2. Hash of last increment λ H

3. Locking status ℓ N64

4. Minimum lifetime t N64

On the other hand, the fee credits transferred by users to the partition α and not yet paid
out to the validators of the partition are tracked as a special bill ια in the money partition.
Such special bill is maintained also for the money partition itself.

4.6 Valid Transaction Orders

Let S = (α, σ,SH , n, e, ιr,N,T ,SD) be a state where N[ι] = (S , hs, φ,D,V, h, ιL, ιR, d, b).

Transaction order P = ⟨(α, τ, ι, A,MC), s, s f ⟩, with MC = (T0, fm, ι f ), is valid if the following
conditions hold:

1. P.α = S .α – transaction is sent to this system

2. fSH (P.ι) = S .σ – target unit is in this shard

3. n < T0 – transaction has not expired

4. N[ι] = ⊥ ∨ VerifyOwner(N[ι].φ, P, P.s) = 1 – owner proof verifies correctly

5. ExtrType(ι f ) = fcr ∧ N[ι f ] , ⊥ – the fee payer has credit in this system

6. s f = ⊥ ∨ VerifyOwner(N[ι f ].φ, P, P.s f ) – if the transaction has a fee authorization
proof, it must satisfy the owner condition of the fee credit record

7. s f , ⊥ ∨ VerifyOwner(N[ι f ].φ, P, P.s) – if the transaction does not have a separate
fee authorization proof, the owner proof of the whole transaction must also satisfy the
owner condition of the fee credit record
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8. fm ≤ N[ι f ].D.b – the maximum permitted transaction cost does not exceed the fee
credit balance

9. SD.FC(P, S ) ≤ fm – the actual transaction cost does not exceed the maximum per-
mitted by the user

10. ψτ(P, S ) – type-specific validity condition holds

The “transfer to fee credit” and “reclaim fee credit” transactions in the money partition
(see 5.2.7.3 and 5.2.7.6) and the “lock fee credit”, “unlock fee credit”, “add fee credit”, and
“close free credit” transactions in all application partitions (see 5.2.7.1, 5.2.7.2, 5.2.7.4,
and 5.2.7.5) are special cases: fees are handled intrinsically in those transactions; there-
fore, no separate fee authorization data (ι f and s f ) should be present and the conditions 5
to 8 above do not apply.

4.7 Executing Transactions

Execution of the transaction order P = ⟨(α, τ, ι, A,MC), s, s f ⟩, with MC = (T0, fm, ι f ), consists
of the following steps:

1. MS ← (S .SD[α].FC(P, S ), 1,⊥) – initialize the transaction processing metadata
(these initial values may be overwritten by Actionτ)

2. Actionτ – execute the type-specific actions

3. Append the transaction record and the new state to the change logs of all units affec-
tected by the transaction; for each ι ∈ targets(P):

3.1 t ← H(P,MS ) – compute the hash of the transaction record

3.2 If |N[ι].S | = 0: – this is a freshly created unit
3.2.1 x← H(⊥, t) – initialize the unit ledger

3.3 If |N[ι].S | > 0: – this is a pre-existing unit
3.3.1 x← N[ι].S |N[ι].S |.x – get the current head hash of the unit ledger
3.3.2 x← H(x, t) – compute the new head hash of the unit ledger

3.4 N[ι].S ← N[ι].S ∥(t, x,N[ι].φ,N[ι].D) – append to the change log

4. DecrCredit(P.MC.ι f ,MS . fa) – decrease the balance of the corresponding fee credit
record

The “transfer to fee credit” and “reclaim fee credit” transactions in the money partition
(see 5.2.7.3 and 5.2.7.6) and the “lock fee credit”, “unlock fee credit”, “add fee credit”, and
“close free credit” transactions in all application partitions (see 5.2.7.1, 5.2.7.2, 5.2.7.4,
and 5.2.7.5) are special cases: fees are handled intrinsically in those transactions; there-
fore, step 4 above is skipped when processing those transactions.

4.8 Round Initialization and Completion

4.8.1 Round Initialization: RInit

The round initialization procedure consists of the following steps:

1. Prune the state change history for all units that were targeted by transactions in the
previous round:
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1.1 Find all such units: I ← {ι : N[ι] , ⊥ ∧ |N[ι].S | > 1}
1.2 For all ι ∈ I:

1.2.1 x← N[ι].S |N[ι].S |.x
1.2.2 N[ι].S ← ⟨(⊥, x,N[ι].φ,N[ι].D)⟩

2. Delete all fee credit records with zero remaining balance and expired lifetime:

2.1 Find all such records:
I ← {ι : ExtrType(ι) = fcr ∧ N[ι] , ⊥ ∧ N[ι].D.b = 0 ∧ N[ι].D.t < S .n}

2.2 For all ι ∈ I: DelItem(ι)

3. RInitα – execute the transaction system specific initialization steps

4.8.2 Round Completion: RCompl

The round completion procedure consists of the following steps:

1. RComplα – execute the transaction system specific completion steps

4.9 Unit Ledger

Unit ledger is a list R1,R2, . . . ,Rk of unit records.

Unit record is a tuple Ri = (Pi,Cunit
i ,Ctree

i ,UCi), where

1. Pi – optional transaction record of type TR ∪ {⊥},

2. Cunit
i – unit tree certificate,

3. Ctree
i – tree certificate,

4. UCi – unicity certificate.

The unit tree certificate Cunit
i is computed from the current parameters φι,Dι, and the ledger

state hash xι of the unit ι. The certificate contents also depend on the state values φ′ι ,D
′
ι , x
′
ι

of other states of the same unit.

The tree certificate Ctree
i = Cstate

i ∥Cshard
i is concatenation of a state tree certificate Cstate

i
(created by a shard) and a shard tree certificate Cshard

i (created by the Core).

The tree certificate is computed from the identifier ι and the summary hash and summary
value hι,Vι of the unit ι. The certificate contents also depend on the summaries hι′ ,Vι′ of
other units.

The ledger state hash xi is computed as

xi =

{
H0(xi−1,Hd(Pi)) if i > 0
⊥ if i = 0

where

Hd(X) =
{

H(X) if X , ⊥
⊥ if X = ⊥

and

H0(X,Y) =
{

H(X,Y) if Y , ⊥
X if Y = ⊥

The structure of a unit ledger is depicted in Fig. 2
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Figure 2. The structure of a unit ledger. In round 1, the unit was created by transaction
P1. In round 2, the unit started in the state copied from round 1 and was then updated by
transactions P2 and P3. The three states in which the unit was during round 2 have distinct
unit tree certificates but they share a common state tree certificate and a common unicity
certificate. In round m, the unit was brought to its current state by transaction Pk.

Figure 3. Evolution of the state tree and unit ledgers.

4.10 Unit Tree Certificate

4.10.1 Definition

Unit Tree Certificate Cunit consists of the following components:

1. An initial tuple (t, s)

2. A list of tuples (b1, y1), . . . , (bm, ym)

Here s ∈ H is the hash of the unit’s state, computed as s = H(φ,D), and t ∈ H is the hash
of the transaction that brought the unit to this state, computed as t = H(P′), where P′ is the
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Round r

hr
s

t1, x1, φ1,D1 t2, x2, φ2,D2

Round r + 1

hr+1
s

t3, x3, φ3,D3 t4, x4, φ4,D4

Figure 4. Evolution of a unit’s state and the unit trees in two rounds.

ι4

ι2

ι1

U1

U2 ι3

U3

U4 ι6

ι5

U5

U6 ι7

U7

Figure 5. Embedding of unit trees in the state tree: ιi are unit nodes in the state tree (these
form a binary hash tree), Ui are the unit trees linked to each unit node.

transaction record.

The yi ∈ H are the sibling hash values on the path from the state’s leaf to the root in the
hash tree aggregating the state change log of the unit within one round, and bi ∈ {0, 1}
indicates whether yi is a right- or left-hand sibling.

4.10.2 Creation: CreateUnitTreeCert

Input:

1. ι – unit identifier to generate the certificate for

2. i – index of the intermediate state within the round to generate the certificate for

3. N – state tree

Output: Unit tree certificate Cunit

Computation:
n← |N[ι].S |
for j← 1 to n do

y j ← H(N[ι].S j.φ,N[ι].S j.D)
z j ← H(N[ι].S j.x, y j)

end for
return ((N[ι].S i.t, yi), plain_tree_chain(⟨z1, . . . , zn⟩, i))

4.11 State Tree Certificate

4.11.1 Definition

State tree certificate Cstate for (ι, z0,V0) consists of the following components:
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1. An initial tuple (hL,VL; hR,VR)

2. A list of tuples (ι1, z1,V1; hs
1,V

s
1), . . . , (ιm, zm,Vm; hs

m,V
s
m) such that ιi , ι for every i ∈

{1, . . . ,m}; if ιi = ι for some i, then the certificate must be considered invalid

4.11.2 Creation: CreateStateTreeCert

Input:

1. ι – extended identifier of type I

2. N – state tree

3. ιr – root node identifier

4. SD – system description of type SD

Output: State tree certificate Cstate

Computation:
C ← ()
ι′ ← ιr
while ι′ < {ι, 0I} do

V ← SD.FS (N[ι′].D)
if ι < ι′ then

ιR ← N[ι′].ιR
C ← (ι′,N[ι′].hs,V; N[ιR].h,N[ιR].V)∥C
ι′ ← N[ι′].ιL

else
ιL ← N[ι′].ιL
C ← (ι′,N[ι′].hs,V; N[ιL].h,N[ιL].V)∥C
ι′ ← N[ι′].ιR

end if
end while
if ι′ = ι then

ιL ← N[ι′].ιL; ιR ← N[ι′].ιR
C ← (N[ιL].h,N[ιL].V; N[ιR].h,N[ιR].V)∥C

end if
return C

4.11.3 Create Tree Certificate: CreateTreeCert

Input:

1. Cstate – state tree certificate

2. Cshard – shard tree certificate

Output: Tree certificate C

Computation: return Cstate∥Cshard
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4.12 State Mutation Functions

4.12.1 Generic Unit Functions

Actions on state tree nodes should be defined through the following helper functions:

1. AddItem(ι, φ,D) – Adds a unit with identifier ι, owner condition φ, and data D; N[ι]←
(⊥, ⟨⟩,⊥, φ,D,V, h, 0I, 0I, 1, 0), where V = VS (D), and h = H(ι,⊥,V; 0H,V0; 0H,V0)

2. DelItem(ι) – Deletes the unit with identifier ι

3. SetOwner(ι, φ) – Sets the owner of unit ι to φ; N[ι].φ← φ

4. UpdateData(ι, f ) – Applies the update function f to the data of unit ι; N[ι].D ←
f (N[ι].D)

4.12.2 Fee Credit Functions

Actions on fee credit records should be defined through the following helper functions:

1. AddCredit(ι f , φ f , v, λ, t) – Calls AddItem(ι f , φ f , (v, λ, 0, t)); in other words, adds a new
credit record (v, λ, 0, t) with the owner condition φ f and the identifier ι f

2. DelCredit(ι f ) – Calls DelItem(ι f ); in other words, deletes the credit record ι f

3. IncrCredit(ι f , v, λ, t) – Calls UpdateData(ι f , f ), where f (D) = (D.b +
v, λ, 0,max(D.t, t)); in other words, sets N[ι f ].D.b ← N[ι f ].D.b + v, N[ι f ].D.λ ← λ,
N[ι f ].D.ℓ ← 0, N[ι f ].D.t ← max(N[ι f ].D.t, t)

4. DecrCredit(ι f , v) – Calls UpdateData(ι f , f ), where f (D) = (D.b − v,D.λ,D.ℓ,D.t); in
other words, sets N[ι f ].D.b ← N[ι f ].D.b − v; note that N[ι f ].D.λ, N[ι f ].D.ℓ, and
N[ι f ].D.t remain unchanged in this operation

4.13 Blocks

4.13.1 Block of a Shard

Block is a tuple B = ⟨(α, σ, h−, νprop); P1, . . . , Pk; UC⟩, where:

1. α – system identifier

2. σ – shard identifier

3. h− – hash of the previous block

4. νprop – block proposer’s identifier

5. P1, . . . , Pm – transaction records of the block

6. UC – unicity certificate

Existence of a transaction in a block is the proof of execution of this transaction during the
block’s round (UC.IR.n) and this changes the state: k > 0 ⇒ UC.IR.h , UC.IR.h′ ∧
block_hash(B) , 0H.
If k = 0 then the block is empty block and block_hash(B) = 0H. Empty blocks might still
change the state due to internal housekeeping (e.g. state tree pruning, dust bills deletion,
etc).
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4.13.2 Genesis Block of a Shard

Genesis block is a tuple B0 = ⟨α, σ,SH , n, e, ιr,N,T ,SD⟩ where:

1. α – system identifier of type A

2. σ – shard identifier of type {0, 1}≤SH .k

3. SH – sharding scheme of type SH

4. n – round number of type N64

5. e – epoch number of type N64

6. ιr – root node identifier of type I

7. N – state tree of type ND[I], i.e. a node N[ι] of type ND is assigned to some identi-
fiers ι of type I

8. T – unicity trust base of type B

9. SD – system descriptions of type SD[A] for all registered transaction systems (in-
cluding SD[α])

4.13.3 Block Creation: CreateBlock

Input:

1. State (α, σ,SH , n, e, ιr,N,T ,SD)

2. Sequence of transaction records P1, . . . , Pm

3. Block hash of the previous block h−, obtained as h− ← B′.UC.IR.hB or h− ←
block_hash(B′), where B′ is the preceding block.

Output: Block B = ⟨(α, σ, h−, ν); P1, . . . , Pk; UC⟩

The procedure changes the state.

Computation:
Execute the round initialization procedure RInit
for i← 1 . . . k do

if Pi is valid then
add Pi to the block
execute Pi

end if
end for
Execute the round completion procedure RCompl
Record Block Proposer identifier νprop (defined and verified by the underlying consensus
mechanism)
Obtain UC certifying the block
return B = ⟨(α, σ, h−, νprop); P1, . . . , Pk; UC⟩

4.13.4 Block Verification: VerifyBlock

Input:

1. Block B = ⟨(α, σ, h−, ν); P1, . . . , Pk; UC⟩
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2. Unicity trust base T

Output: True or False

Computation:
x← block_hash(B)
if UC.Cshard , ∅ then

r ← CompUnicityTreeCert(UC.Cuni,CompShardTreeCert(UC.Cshard,UC.IR))
else

r ← CompUnicityTreeCert(UC.Cuni,UC.IR)
end if
return VerifyUnicitySeal(r,UC.Cr,T ) ∧ UC.IR.hB = x

4.13.5 Block Hash: BLOCK_HASH

Hash of a block is computed as hash of (hash of block header fields ∥ tree hash of transac-
tions).

Input: Block B = ⟨(α, σ, h−, ν); P1, . . . , Pk; UC⟩

Output: Hash of type H

Computation:
function block_hash(B)

if k = 0 then ▷ Empty block
return 0H

else
for i← 1 to k do

hi ← H(Pi)
end for
return H(H(α, σ, h−, ν), plain_tree_root(⟨h1, . . . , hk⟩))

end if
end function
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5 Money Partition Type

5.1 Motivation and General Description

5.1.1 Pure Bill Money Schemes

Pure bill-type money schemes only have transfer type transactions (Fig. 6) that change the
ownership conditions of bills.

Pure bill schemes enable massively parallel decompositions of the money system, but also
have shortcomings. Similar to physical cash, it is not always possible for a party to pay
exact amounts and therefore, some additional services, like exchange are needed.

Figure 6. Bill transfer.

5.1.2 Extended Bill Money Scheme

Extended bill money scheme addresses the shortcomings of pure bill schemes by intro-
ducing split type payments (Fig. 7) that make exact payments always possible.

Figure 7. Bill split.

Split type transactions enable exact payments but introduce a new problem of having too
many small-value bills (dust bills) in the end. Therefore, additional transactions and ledger
mechanisms are needed to reduce the amount of dust bills by joining them to larger bills.

5.1.3 Dust Collection

Dust collection addresses the issue of dust bills by introducing new types of transactions
as well as a new type of unit with value.
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In the extended bill scheme, a special type of ownership – Dust Collector (DC) is used.
Users can transfer their dust bills to DC via a special transfer type transaction transDC
(Fig. 8) and get a proof of having done so.

Figure 8. Transfer of dust bills to Dust Collector.

By presenting those proofs to the system, users can then obtain a new, larger-value bill via
swapDC transactions (Fig. 9).

Figure 9. Swap with Dust Collector.

Formally, the Dust Collector (DC) controls a fraction of total money in the system. This
money is called dust collector money supply and is represented as a special bill with iden-
tifier ι0. For issuing a new bill with value n to a user, the dust collector money supply is
reduced by n.

If the system is sharded, then every shard must have its own DC money supply.

The transfers to DC and swaps with DC alone do not reduce the number of small-value
bills in the system. There has to be a mechanism of joining the dust bills.

In the extended bill scheme, dust collection is introduced as a necessary automatic func-
tionality related to block creation, i.e. every block creator has to regularly, as defined by the
ledger rules, delete the dust bills and simultaneously rise the CB money supply by an equal
amount. Such a method is depicted in Fig. 10, where dust bills (ι1, v1,DC), . . . , (ιk, vk,DC)
are deleted and their value is added to the DC money supply by raising the value of the DC
bill (ι0, v0,DC) by d = v1 + . . . + vk.

All the activities related to dust collection preserve the total money of the system, including
the DC money supply.

The DC money supply is just a technical system-related measure and not designed for
actively supporting business transactions with the money.

5.1.4 Money Invariants

There are two types of money in Alphabill’s ledger:

1. User money with total value vuser formed by the existing bills not owned by DC

2. Dust collector money with total value vDC formed by the existing bills owned by DC
and the DC money supply.
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Figure 10. Dust collection.

Money invariant: The value vtotal = vuser + vDC is constant in every shard

Swap money: The sum vswapDC of the values of all dust bills paid to DC for which the
swapDC has not yet been executed is not locally (shard-wise) verifiable, it is only verifiable
from the global state (the combination of the states of all shards). We call such money
swap money.

There are two more invariants that are not locally verifiable:

• veff
user = vuser + vswapDC – effective user money

• veff
DC = vDC − vswapDC – effective dust collector money

These two invariants are locally verifiable only if vswapDC = 0.

Figure 11. Types of money and money invariants.

5.2 Specification of the Money Partition

5.2.1 Parameters, Types, Constants, Functions

System identifier: αmoney

Type and unit identifier lengths: tidlen = 8, uidlen = 256

Summary value type V: N64

Summary trust base: V = vtotal

Summary check: γ(V, vtotal) ≡ V = vtotal

February 28, 2024 42 / 143



preliminary release

Unit types: U = {bill, fcr} (bills, fee credit records)

Data types:

• Dbill: tuples (v, t, λ, ℓ) where:

1. v – value of type N64; the value is represented in fixpoint format with 8 fractional
decimal digits; this means that a bill with value 1 Alpha has v = 100000000 and
v = 123 represents 0.00000123 Alpha

2. t – the partition round number of the last transaction with the bill of type N64

3. λ – backlink of type H; hash value computed over all fields of the previous
transaction order with the same bill; λ = H(P)

4. ℓ – lock status of the bill, of type N64; allows locking of the bill at the beginning of
a multi-step protocol that needs the bill to remain unmodified by other transac-
tions during the protocol execution; ℓ = 0 means the bill is not locked, any other
value means it’s locked

• Dfcr = (b, λ, ℓ, t), where

1. b ∈ N±64 is the current balance of this record, in fixpoint format with 8 fractional
decimal digits

2. λ ∈ H is the hash of the last addFC, closeFC, lockFC, or unlockFC transaction
for this record

3. ℓ ∈ N64 is the lock status of the record; ℓ = 0 means the record is not locked,
any other value means it’s locked

4. t ∈ N64 is the minimum lifetime of this record

Summary functions:

1. Vs(D) = D.v for Dbill, or 0 otherwise

2. FS (v, vL, vR) = v + vL + vR

3. FS (⊥, vL, vR) = vL + vR

Summary value of zero-unit: N[0I].V = 0

Transaction types: T = {trans, split, lock, unlock, transDC, swapDC, lockFC, unlockFC,
transFC, addFC, closeFC, reclFC} (transfer a bill, split a bill, lock a bill, unlock a bill, transfer
to dust collector, swap with dust collector, lock a fee credit record, unlock a fee credit record,
transfer to fee credit, add fee credit, close fee credit, reclaim fee credit)

5.2.2 Transfer

Transaction order P = ⟨(α, trans, ι, A,MC), s, s f ⟩ with A = (v, φ, η, λ) and MC = (T0, fm, ι f ),
where:

1. v – amount to transfer, of type N64

2. φ – new bearer condition, of type L

3. η – optional nonce, of type {0, 1}∗

4. λ – backlink, of type H
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Transaction-specific validity condition:

ψtrans(P, S ) ≡
ExtrType(P.ι) = bill ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
P.A.v = S .N[P.ι].D.v ∧
P.A.λ = S .N[P.ι].D.λ

That is,

• ι identifies an existing bill

• the bill is not locked

• the value to be transferred is the value of the bill

• the transaction follows the previous valid transaction with the bill

Actions Actiontrans:

1. SetOwner(ι, A.φ)

2. UpdateData(ι, f ), where f (D) = (D.v, S .n,H(P),D.ℓ)

Table 8. Data fields of the trans transaction record.

No Field Notation Type Predefined
value

1. system identifier α A αmoney

2. transaction type τ T trans
3. unit identifier ι I -
4. amount to transfer A.v N64 -
5. new owner condition A.φ L -
6. nonce A.η {0, 1}∗ ∪

{⊥}

-

7. backlink A.λ H -
8. message timeout MC.T0 N64 -
9. maximum fee MC. fm N64 -
10. fee credit record iden-

tifier
MC.ι f I ∪ {⊥} -

11. owner proof s {0, 1}∗ -
12. fee authorization proof s f {0, 1}∗ ∪

{⊥}

-

13. actual fee MS . fa N64 -

5.2.3 Split

Transaction order P = ⟨(α, split, ι, A,MC), s, s f ⟩ with A = (v1, . . . , vm;φ1, . . . , φm; v′, η, λ) and
MC = (T0, fm, ι f ), where:

1. v1, . . . , vm – amounts to transfer, of type N64
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2. φ1, . . . , φm – new bearer conditions, of type L

3. v′ – remaining value, of type N64

4. η – optional nonce, of type {0, 1}∗

5. λ – backlink, of type H

Transaction-specific validity condition:

ψsplit(P, S ) ≡
ExtrType(P.ι) = bill ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
P.A.v1 + . . . + P.A.vm + P.A.v′ = S .N[P.ι].D.v ∧
P.A.v1 > 0 ∧ . . . ∧ P.A.vm > 0 ∧ P.A.v′ > 0 ∧
P.A.λ = S .N[P.ι].D.λ

That is,

• ι identifies an existing bill

• the bill is not locked

• the sum of the values to be transferred plus the remaining value equals the value of
the bill

• the values to be transferred and also the remaining value are all non-zero

• the transaction follows the previous valid transaction with the bill

Actions Actionsplit:

1. for i = 1, . . . ,m:

1.1 ιi ← NodeID(bill,PrndSh(ExtrUnit(P.ι), P.ι∥P.A∥P.MC∥i)), i.e. generate a new bill
identifier in the same shard

1.2 AddItem(ιi, P.A.φi, (P.A.vi, S .n,H(P, i), 0)) – create a new bill ιi with value vi and
owner condition φi

2. UpdateData(ι, f ), where f (D) = (P.A.v′, S .n,H(P),D.ℓ)

Targets: For split transaction P, targets(P) = {P.ι, ι1, ι2, . . . , ιm}.

5.2.4 Lock

Transaction order P = ⟨(α, lock, ι, A,MC), s, s f ⟩ with A = (ℓ, λ) and MC = (T0, fm, ι f ), where:

1. ℓ – new lock status, of type N64

2. λ – backlink, of type H

Transaction-specific validity condition:

ψlock(P, S ) ≡
ExtrType(P.ι) = bill ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
P.A.ℓ > 0 ∧
P.A.λ = S .N[P.ι].D.λ
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Table 9. Data fields of the split transaction record.

No Field Notation Type Predefined
value

1. system identifier α A αmoney

2. transaction type τ T split
3. unit identifier ι I -
4. amounts to transfer A.v1, . . . , A.vm N64 -
5. new owner conditions A.φ1, . . . , A.φm L -
6. remaining value A.v′ N64 -
7. nonce A.η {0, 1}∗ ∪

{⊥}

-

8. backlink A.λ H -
9. message timeout MC.T0 N64 -
10. maximum fee MC. fm N64 -
11. fee credit record iden-

tifier
MC.ι f I ∪ {⊥} -

12. owner proof s {0, 1}∗ -
13. fee authorization proof s f {0, 1}∗ ∪

{⊥}

-

14. actual fee MS . fa N64 -

That is,

• ι identifies an existing bill

• the bill is not locked

• the new status is a “locked” one

• the transaction follows the previous valid transaction with the bill

Actions Actionlock:

1. UpdateData(ι, f ), where f (D) = (D.v, S .n,H(P), P.A.ℓ)

5.2.5 Unlock

Transaction order P = ⟨(α, unlock, ι, A,MC), s, s f ⟩ with A = (λ) and MC = (T0, fm, ι f ), where:

1. λ – backlink, of type H

Transaction-specific validity condition:

ψunlock(P, S ) ≡
ExtrType(P.ι) = bill ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ > 0 ∧
P.A.λ = S .N[P.ι].D.λ

That is,
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• ι identifies an existing bill

• the bill is locked

• the transaction follows the previous valid transaction with the bill

Actions Actionunlock:

1. UpdateData(ι, f ), where f (D) = (D.v, S .n,H(P), 0)

5.2.6 Dust Collection

As explained in Sec. 5.1.3, the purpose of the dust collection protocol is to join several
smaller-value bills into a single larger-value bill. The process consists of several steps:

• A target bill is selected to receive the value of the collected dust bills. The target
bill may be any existing bill, but it must not be changed by other transactions during
the execution of the dust collection protocol. To ensure that, the target bill should be
locked using a lock transaction.

• The dust bills to be collected are “sent to dust collection” using transDC transactions.
To prevent replay attacks, each of the transDC transactions must identify the selected
target bill and its current state.

• The value of the dust bills is added to the target bill using a swapDC transaction. As
this transaction completes the dust collection process, it also unlocks the target bill.

5.2.6.1 Transfer to Dust Collector

Transaction order P = ⟨(α, transDC, ι, A,MC), s, s f ⟩, with A = (v, ι′, λ′, λ) and MC =

(T0, fm, ι f ), where:

1. v – target value, of type N64

2. ι′ – identifier of the target bill, of type I

3. λ′ – current backlink of the target bill, of type H

4. λ – backlink, of type H

Transaction-specific validity condition:

ψtransDC(P, S ) ≡
ExtrType(P.ι) = bill ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
P.A.v = S .N[P.ι].D.v ∧
P.A.λ = S .N[P.ι].D.λ

That is,

• ι identifies an existing bill

• the bill is not locked

• the target value equals the value of the bill

• the transaction follows the previous valid transaction with the bill
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Actions ActiontransDC:

1. SetOwner(ι,DC)

2. UpdateData(ι0, f ′), where f ′(D) = (D.v + P.A.v, S .n,H(P),D.ℓ) – increase DC money
supply

3. UpdateData(ι, f ), where f (D) = (0, S .n,H(P),D.ℓ) – decrease bill value

Table 10. Data fields of the transDC transaction record.

No Field Notation Type Predefined
value

1. system identifier α A αmoney

2. transaction type τ T transDC
3. unit identifier ι I -
4. target value A.v N64 -
5. target identifier A.η I -
6. target backlink A.λ′ H -
7. backlink A.λ H -
8. message timeout MC.T0 N64 -
9. maximum fee MC. fm N64 -
10. fee credit record iden-

tifier
MC.ι f I ∪ {⊥} -

11. owner proof s {0, 1}∗ -
12. fee authorization proof s f {0, 1}∗ ∪

{⊥}

-

13. actual fee MS . fa N64 -

5.2.6.2 Swap with Dust Collector

Transaction order P = ⟨(α, swapDC, ι, A,MC), s, s f ⟩, with A = (v, φ; Pk1 , . . . , Pkℓ ;Πk1 , . . . ,Πkℓ)
and MC = (T0, fm, ι f ), where:

1. v – target value, of type N64

2. φ – target owner condition, of type L

3. Pk1 , . . . , Pkℓ – sequence of bill transfer records, of type transDC

4. Πk1 , . . . ,Πkℓ – transaction execution proofs of Pk1 , . . . , Pkℓ , of type XP

Transaction-specific validity condition:
ψswapDC(P, S ) is logical conjunction of the following conditions:

1. P.A.v = Pk1 .A.v + . . . + Pkℓ .A.v – target value is the sum of the values of the transDC
payments

2. P.A.v ≤ N[ι0].D.v – there is sufficient DC-money supply

3. ExtrType(P.ι) = bill ∧ N[ι] , ⊥ – ι identifies an existing bill

4. Pk1 .α = . . . = Pkℓ .α = αmoney – transfers were in the money partition

5. Pk1 .τ = . . . = Pkℓ .τ = transDC – bills were transferred to DC
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Table 11. Data fields of the swapDC transaction record.

No Field Notation Type Predefined
value

1. system identifier α A αmoney

2. transaction type τ T swapDC
3. unit identifier ι I -
4. target value A.v N64 -
5. owner condition A.φ L -
6. transfer records A.Pk1 , . . . , A.Pkℓ transDC -
7. transaction proofs A.Πk1 , . . . , A.Πkℓ XP -
8. message timeout MC.T0 N64 -
9. maximum fee MC. fm N64 -
10. fee credit record iden-

tifier
MC.ι f I ∪ {⊥} -

11. owner proof s {0, 1}∗ -
12. fee authorization proof s f {0, 1}∗ ∪

{⊥}

-

13. actual fee MS . fa N64 -

6. Pk1 .ι < . . . < Pkℓ .ι – transfer orders are listed in strictly increasing order of bill identi-
fiers (in particular, this ensures that no source bill can be included multiple times)

7. Pk1 .A.ι
′ = . . . = Pkℓ .A.ι

′ = ι – bill transfer orders contain correct target identifiers

8. Pk1 .A.λ
′ = . . . = Pkℓ .A.λ

′ = S .N[P.ι].D.λ – bill transfer orders contain correct target
backlinks

9. VerifyTxProof(Πk1 , Pk1 , S .T , S .SD) ∧ . . . ∧ VerifyTxProof(Πkℓ , Pkℓ , S .T , S .SD) – trans-
action proofs of the bill transfer orders verify

Actions ActionswapDC:

1. UpdateData(ι0, f ), where f (D) = (D.v − P.A.v, S .n,H(P),D.ℓ) – reduce DC money
supply by P.A.v

2. UpdateData(ι, f ), where f (D) = (D.v+P.A.v, S .n,H(P), 0) – increase the value of ι by
P.A.v

5.2.7 Fee Credit Management

Adding and reclaiming fee credits are multi-step protocols and it’s advisable to lock the
target unit to prevent failures due to concurrent modifications by other transactions.

More specifically, for adding fee credits:

• If the target fee credit record exists, it should be locked using a lockFC transaction in
the target partition.

• The amount to be added to fee credits should be paid using a transFC transaction in
the money partition. To prevent replay attacks, the transFC transaction must identify
the target record and its current state.
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• The transferred value is added to the target record using an addFC transaction in the
target partition. As this transaction completes the fee transfer process, it also unlocks
the target record.

And for reclaiming fee credits:

• The target bill should be locked using a lock transaction in the money partition.

• The fee credit should be closed using a closeFC transaction in the target partition.
To prevent replay attacks, the closeFC transaction must identify the target bill and its
current state.

• The reclaimed value is added to the target bill using a reclFC transaction in the money
partition. As this transaction completes the fee transfer process, it also unlocks the
target bill.

5.2.7.1 Lock Fee Credit Record

Transaction order P = ⟨(α, lockFC, ι, A,MC), s, s f ⟩ with A = (ℓ, λ) and MC = (T0, fm, ι f ),
where:

1. ℓ – new lock status, of type N64

2. λ – backlink, of type H

Transaction-specific validity condition:

ψlockFC(P, S ) ≡
ExtrType(P.ι) = fcr ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
P.A.ℓ > 0 ∧
P.A.λ = S .N[P.ι].D.λ ∧
P.MC. fm ≤ S .N[P.ι].D.b ∧
P.MC.ι f = ⊥ ∧ s f = ⊥

That is,

• ι identifies an existing fee credit record

• the record is not locked

• the new status is a “locked” one

• the transaction follows the previous valid transaction with the record

• the transaction fee can’t exceed the record balance

• there’s no fee credit reference or separate fee authorization proof

Actions ActionlockFC:

1. UpdateData(ι, f ), where f (D) = (D.b − MS . fa,H(P), P.A.ℓ,D.t)

Note: Reporting of earned fees and payouts from the partition’s fee bill to the validators will
be handled in the usual way.
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5.2.7.2 Unlock Fee Credit Record

Transaction order P = ⟨(α, unlockFC, ι, A,MC), s, s f ⟩ with A = (λ) and MC = (T0, fm, ι f ),
where:

1. λ – backlink, of type H

Transaction-specific validity condition:

ψlockFC(P, S ) ≡
ExtrType(P.ι) = fcr ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ > 0 ∧
P.A.λ = S .N[P.ι].D.λ ∧
P.MC. fm ≤ S .N[P.ι].D.b ∧
P.MC.ι f = ⊥ ∧ s f = ⊥

That is,

• ι identifies an existing fee credit record

• the record is locked

• the transaction follows the previous valid transaction with the record

• the transaction fee can’t exceed the record balance

• there’s no fee credit reference or separate fee authorization proof

Actions ActionlockFC:

1. UpdateData(ι, f ), where f (D) = (D.b − MS . fa,H(P), 0,D.t)

Note: Reporting of earned fees and payouts from the partition’s fee bill to the validators will
be handled in the usual way.

5.2.7.3 Transfer to Fee Credit

Transaction order P = ⟨(α, transFC, ι, A,MC), s, s f ⟩, with A = (v, α′, ι f , tb, te, λ
′, λ) and MC =

(T0, fm, ι f ), where:

1. v – amount to transfer, of type N64

2. α′ – target system identifier, of type A

3. ι f – target fee credit record identifier, of type Iα′ (the type of unit identifiers in the
target system)

4. tb – earliest round in which the corresponding “add fee credit” transaction can be
executed in the target system, of type N64

5. te – latest round in which the corresponding “add fee credit” transaction can be exe-
cuted in the target system, of type N64

6. λ′ – target backlink, of type H∪{⊥}; for the proof of transfer to be usable in a following
addFC operation, this must be set to the current state hash of the target credit record
if the record exists, or to ⊥ if the record does not exist yet
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Table 12. Data fields of the transFC transaction record.

No Field Notation Type Predefined
value

1. system identifier α A αmoney

2. transaction type τ T transFC
3. unit identifier ι I -
4. amount A.v N64 -
5. target system identifier A.α′ A -
6. target record identifier A.ι f Iα′ -
7. earliest addition time A.tb N64 -
8. latest addition time A.te N64 -
9. target backlink A.λ′ H ∪ {⊥} -
10. backlink A.λ H -
11. message timeout MC.T0 N64 -
12. maximum fee MC. fm N64 -
13. fee credit record iden-

tifier
MC.ι f I ∪ {⊥} ⊥

14. owner proof s {0, 1}∗ -
15. fee authorization proof s f {0, 1}∗ ∪

{⊥}

⊥

16. actual fee MS . fa N64 -

7. λ – backlink, of type H

Transaction-specific validity condition:

ψtransFC(P, S ) ≡
ExtrType(P.ι) = bill ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
P.A.v ≤ S .N[P.ι].D.v ∧
P.A.λ = S .N[P.ι].D.λ ∧
P.MC. fm ≤ P.A.v ∧
P.MC.ι f = ⊥ ∧ s f = ⊥

That is,

• ι identifies an existing bill

• the bill is not locked

• the amount to transfer does not exceed the value of the bill

• the transaction follows the previous valid transaction with the bill

• the the transaction fee can’t exceed the transferred amount

• there’s no fee credit reference or separate fee authorization proof

Actions ActiontransFC:
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1. UpdateData(ι, f ), where f (D) = (D.v − P.A.v, S .n,H(P),D.ℓ)

Note: The transferred credits will be aggregated and added to the target system’s fee bill
at the end of the round. The processing fees will be aggregated and added to the money
partition’s fee bill at the end of the round. Reporting of earned fees and payouts from the
partition’s fee bill to the validators will be handled in the usual way.

5.2.7.4 Add Fee Credit

Transaction order P = ⟨(α, addFC, ι, A,MC), s, s f ⟩, with A = (φ, P′,Π′) and MC = (T0, fm, ι f ),
where:

1. φ ∈ L – target fee credit record owner condition

2. P′ – bill transfer record of type transFC

3. Π′ – transaction proof of P′, of type XP

Validity Condition

ψaddFC(P, S ) is logical conjunction of the following conditions:

1. ExtrType(P.ι) = fcr – target unit is a fee credit record,

2. S .N[P.ι] = ⊥ ∨ S .N[P.ι].φ = P.A.φ – if the target exists, the owner condition matches,

3. VerifyTxProof(Π′, P′, S .T , S .SD) – proof of the bill transfer order verifies,

4. P′.α = αmoney ∧ P′.τ = transFC – bill was transferred to fee credits,

5. P′.A.α = P.α – bill was transferred to fee credits for this system,

6. P′.A.ι f = P.ι – bill was transferred to fee credits of the target record,

7. (S .N[P.ι] = ⊥ ∧ P′.A.λ′ = ⊥) ∨ (S .N[P.ι] , ⊥ ∧ P′.A.λ′ = S .N[P.ι].λ) – bill transfer
order contains correct target backlink value,

8. P′.A.tb ≤ t ≤ P′.A.te, where t is the number of the current block being composed – bill
transfer is valid to be used in this block,

9. P′.MS . fa+P.MC. fm ≤ P′.A.v – the transaction fees can’t exceed the transferred value,

10. P.MC.ι f = ⊥ ∧ s f = ⊥ – there’s no fee credit reference or separate fee authorization
proof.

Actions ActionaddFC:

1. v′ ← P′.A.v − P′.MS . fa − MS . fa – the net value of credit

2. if S .N[P.ι] = ⊥:

2.1 AddCredit(P.ι, P.A.φ, v′,H(P), P.A.te + 1)

3. else:

3.1 IncrCredit(P.ι, v′,H(P), P.A.te + 1)

Note: Reporting of earned fees and payouts from the partition’s fee bill to the validators will
be handled in the usual way.
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5.2.7.5 Close Fee Credit

Transaction order P = ⟨(α, closeFC, ι, A,MC), s, s f ⟩, A = (v, ι′, λ′), MC = (T0, fm, ι f ), where:

1. v ∈ N64 – amount

2. ι′ ∈ Imoney – target bill

3. λ′ ∈ H – target backlink; for the proof of closure to be usable in a following reclFC
operation, this must be set to the current state hash of the target bill

Validity Condition

ψcloseFC(P, S ) ≡
ExtrType(P.ι) = fcr ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
P.A.v = S .N[P.ι].b ∧
P.MC. fm ≤ S .N[P.ι].b ∧
P.MC.ι f = ⊥ ∧ s f = ⊥

That is,

• ι identifies an existing fee credit record,

• the record is not locked,

• the amount is the current balance of the record,

• the transaction fee can’t exceed the current balance of the record,

• there’s no fee credit reference or separate fee authorization proof.

Actions ActioncloseFC:

1. DecrCredit(ι, S .N[ι].b)

2. UpdateData(ι, f , where f (D) = (D.b,H(P),D.ℓ,D.t)

Note: Reporting of earned fees and payouts from the partition’s fee bill to the validators will
be handled in the usual way.

5.2.7.6 Reclaim Fee Credit

Transaction order P = ⟨(α, reclFC, ι, A,MC), s, s f ⟩, with A = (P′,Π′, λ) and MC = (T0, fm, ι f ),
where:

1. P′ – fee credit closure order, of type closeFC

2. Π′ – transaction proof of P′, of type XP

3. λ – backlink, of type H
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Table 13. Data fields of the reclFC transaction record.

No Field Notation Type Predefined
value

1. system identifier α A αmoney

2. transaction type τ T reclFC
3. unit identifier ι I -
4. credit closure order A.P′ closeFC -
5. transaction proof A.Π′ XP -
6. backlink A.λ H -
7. message timeout MC.T0 N64 -
8. maximum fee MC. fm N64 -
9. fee credit record iden-

tifier
MC.ι f I ∪ {⊥} ⊥

10. owner proof s {0, 1}∗ -
11. fee authorization proof s f {0, 1}∗ ∪

{⊥}

⊥

12. actual fee MS . fa N64 -

Transaction-specific validity condition:

ψreclFC(P, S ) ≡
S .N[P.ι] , ⊥ ∧
VerifyTxProof(Π′, P′, S .T , S .SD) ∧
P′.τ = closeFC ∧
P′.A.ι′ = P.ι ∧
P′.A.λ′ = S .N[P.ι].D.λ ∧
P′.MS . fa + P.MC. fm ≤ P′.A.v ∧
P.A.λ = S .N[P.ι].D.λ ∧
P.MC.ι f = ⊥ ∧ s f = ⊥

That is,

• ι identifies an existing bill

• the proof of the credit closure order verifies

• the order is a credit closure

• the order targets the current bill

• the order contains the correct target backlink value

• the transaction fees can’t exceed the transferred value

• the transaction follows the previous valid transaction with the bill

• there’s no fee credit reference or separate fee authorization proof

Actions ActionreclFC:

1. v′ ← P′.A.v − P′.MS . fa − MS . fa – net value reclaimed
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2. UpdateData(ι, f ), where f (D) = (D.v + v′, S .n,H(P), 0)

Note: The reclaimed credits will be aggregated and removed from the target system’s fee
bill at the end of the round. The processing fees will be aggregated and added to the money
partition’s fee bill at the end of the round. Reporting of earned fees and payouts from the
partition’s fee bill to the validators will be handled in the usual way.

5.2.8 Round initialization and completion

5.2.8.1 Round Initialization: RInitmoney

1. Delete all bills with zero value and expired lifetime:

1.1 Find all such bills:
I ← {ι : ExtrType(ι) = bill ∧ N[ι] , ⊥ ∧ N[ι].D.v = 0 ∧ N[ι].D.Tdust < S .n}

1.2 For each known transaction system identifier α:
I ← I\{S .SD[α].ιFC}

1.3 For each ι ∈ I: DelItem(ι)

5.2.8.2 Round Completion: RComplmoney

1. Perform fee accounting

1.1 For each known transaction system identifier α:
1.1.1 Compute v+ as the sum of P.A.v − P.MS . fa over all transFC records P with

P.A.α = α in the current block
1.1.2 Compute v− as the sum of P.A.P′.A.v− P.A.P′.MS . fa over all reclFC records

P with P.A.P′.α = α in the current block
1.1.3 UpdateData(S .SD[α].ιFC, f ), where f (D) = (D.v + v+ − v−,D.t,D.λ,D.ℓ)

1.2 Compute v as the sum of the MS . fa fields over all transFC and reclFC records
in the current block

1.3 UpdateData(S .SD[αmoney].ιFC, f ), where f (D) = (D.v + v,D.t,D.λ,D.ℓ)
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6 Atomicity Partition Type 2.0

6.1 Motivation and General Description

6.1.1 Motivation

Let u1, . . . , um be units with identifiers ι1, . . . , ιm and owner conditions φ1, . . . , φm, respec-
tively.

The units u1, . . . , um may belong to different transaction systems (partitions) with identifiers
α1, . . . , αm, respectively. It is assumed that in all these partitions there are transaction types
for changing the ownership conditions of units.

Goal: transfer the units atomically to new owner conditions φ′1, . . . , φ
′
m so that either:

• all transfers happen – all units u1, . . . , um are transferred to the new owner conditions
φ′1, . . . , φ

′
m, or

• none of the transfers happen – all units will have owner conditions equivalent to the
previous conditions φ1, . . . , φm

The units may potentially be controlled by different parties. We assume that these parties
may communicate in order to agree on the atomic transfer, i.e. after communication, all
parties know α1, . . . , αm, ι1, . . . , ιm, φ1, . . . , φm. The parties also agree on other transaction
specific parameters.

If there is more than one party, this is an atomic swap. If there is a single party, this is an
atomic multi-unit transfer.

6.1.2 General Description of the Atomicity Partition

There is a specific transaction system (partition) with identifier α0 that provides necessary
unique references for atomic multi-unit transactions. We call this atomicity partition.

Units of the atomicity partition are the atomic multi-unit transactions, i.e. every such trans-
action has a unique pseudo-random identifier ι (referred to as contract identifier) in the
atomicity partition.

There is no ownership or value for the transactions themselves; φ ≡ 1 for every such unit.

Transactions of the atomicity partition are:

1. fin – final status transaction that is generated automatically by the atomicity partition
and that indicates the final status of the contract ι

2. con – confirming a transaction with contract identifier ι
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The data D of the units of the atomicity partition consists of the following components:

1. count – number of component transactions involved

2. nonce – nonce of type N128

3. begin – round number

4. end – round number

5. confirmed – set of tuples (i, P′,Π), where i is the index of the target of P′ among
u1, . . . , um and Π is a proof that the transaction in the record P′ was executed in the
appropriate partition.

6.2 Phases of Atomic Multi-Unit Transactions

6.2.1 Phase 1: Preparation

Parties P1, . . . ,Pm prepare transaction orders P1, . . . , Pm that transfer the
ownerships of the units ι1, . . . , ιm to special parameterised owner predicates
φato(α0, ι, tb, te, φ1, φ

′
1; ·; ·, ·, ·), . . . , φato(α0, ι, tb, te, φm, φ

′
m; ·; ·, ·, ·)

The contract identifier ι is computed with a deterministic collision-resistant function
f (r, P̃1, . . . , P̃m) on:

1. A nonce r of type N128

2. The reduced payment orders P̃1, . . . , P̃m without signatures (owner proofs) and with
the reduced owner predicates φ̃ato(α0, ⌊⌋, tb, te, φi, φ

′
i ; ·; ·, ·, ·), where the identifier ι is

replaced with empty string ⌊⌋.

The predicate φato(α0, ι, tb, te, φ, φ
′; ·; ·, ·, ·) is defined as follows:

φato(α0, ι, tb, te, φ, φ
′; P;Π, Pfs, s), where the triple (Π, Pfs, s) represents the owner proof, is

true if and only if one of the following conditions holds:

1. φ′(P, s) = 1, and Π of type XP is a proof that the final status message Pfs = ⟨fin, ι, 1⟩
is included in round t (tb < t ≤ te) of the partition α0, i.e.

φato(α0, ι, tb, te, φ, φ
′; ·;Π, Pfs, ·) ≡ φ′(·, ·)

2. φ(P, s) = 1, and Π of type XP is a proof that the final status message Pfs = ⟨fin, ι, 0⟩ is
included in round t (tb < t ≤ te) of the partition α0, i.e.

φato(α0, ι, tb, te, φ, φ
′; ·;Π, Pfs, ·) ≡ φ(·, ·)

3. φ(P, s) = 1, and Π of type SP is a proof that there is no unit with identifier ι in the state
tree of round te of the partition α0.

Therefore, the next transaction P with the unit can only be made if one of the final status
messages ⟨fin, ι, 1⟩, or ⟨fin, ι, 0⟩ is stored in the blockchain of the atomicity partition, or, as a
(rare) backup case, when it is proved that no units with identifier ι exist at the round te of the
atomicity partition, which means that none of the con transactions reached the atomicity
partition.
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6.2.2 Phase 2: Confirmation

All parties sign their transaction orders P1, . . . , Pm (by adding ownership proofs si to Pi) and
send them to the corresponding partitions α1, . . . , αm.

Parties obtain transaction proofs Π1, . . . ,Πm for the records of transactions P1, . . . , Pm.

Every party i sends the confirmation message ⟨α0, con, ι, Ai,MC⟩ to the atomicity partition
with Ai = (m, r, i, Pi,Πi).

6.2.2.1 Actions of the Confirmation Message

Let t be the current round number of the atomicity partition.

Having received a message ⟨α0, con, ι, (m, r, i, P′,Π),MC⟩, the atomicity partition does the
following.

1. If any of the following conditions fails, discard the message:

1.1 m ≥ 2 and 1 ≤ i ≤ m

1.2 P′ contains a locking script of type φato(α0, ι, tb, te, . . .) with tb and te such that
tb < t ≤ te, where t is the current round number of the atomicity partition.

1.3 Π is a proof that the transaction in the record P′ was executed in the appropriate
partition.

2. If unit ι does not exist, then add a new unit with:

• count = m,

• nonce = r

• begin = tb

• end = te

• confirmed = {(i, P,Π)}.

3. If unit ι exists:

3.1 If m = count, r = nonce, tb = begin, and te = end then:
3.1.1 confirmed← confirmed ∪ {(i, P,Π)}
3.1.2 If confirmed contains confirmations for all m messages P1, . . . , Pm, then:

3.1.2.1 If ι = f (r, P̃1, . . . , P̃m) then add Pfs = ⟨fin, ι, 1⟩ to the current block.
3.1.2.2 If ι , f (r, P̃1, . . . , P̃m) then add Pfs = ⟨fin, ι, 0⟩ to the current block.

6.2.3 Other Actions of the Atomicity Partition

At the beginning of every block with round number t:

1. For all units ι with end < t, delete the unit ι from the state tree.

2. If any units were deleted, record this event by adding a deleteObsRec record to the
current block.

At the end of every block with round number t:

1. For all units ι with end = t for which confirmed does not contain all confirmations, add
Pfs = ⟨fin, ι, 0⟩ to the current block.
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6.2.4 Explanations

All the multi-unit transactions for which at least one of the con reaches the atomicity parti-
tion will have final status during the atomicity partition rounds tb + 1, . . . , te and the corre-
sponding fin transaction can be found in blocks (and the state tree) of those rounds.

All con transactions received after te will be discarded. Hence, if no con transactions were
received during tb + 1, . . . , te, then there will be no units with identifier ι in the state tree of
the atomicity partition.

Any attempt to trick the atomicity partition to issue the final status ⟨fin, ι, 1⟩ by sending
confirmation messages with ι fails, as changing the timeouts tb, te will also change ι as long
as f is collision-resistant.

6.2.5 Memory Size of the Atomicity Partition

Let m be the average number of units involved in the multi-unit atomic transactions. Let ρ
be the average number of multi-unit transactions per block. Let N be the total number of
units in all partitions of the AlphaBill system. Let k be the bit-length of the hash values. Let
ttr be the average value of te − tb.

The maximum size of the data part D of a state tree node is ≈ m · k · log2 N bits, which is
dominated by the size of m block inclusion proofs each of size ≈ k · log2 N bits. Together
with the identifier and two pointers, a node has 3k additional bits.

There are about ttr · ρ nodes in the tree and hence the total size of the state tree in bits is:

ttr · ρ · k · (m · log2 N + 3)

Say ρ = 106, m = 3, k = 256, ttr = 10, N = 1012. Then log2 N ≈ 40 and the total size of the
state tree is about 40 Gbytes.

One machine may not be able to handle 106 transactions per block. Hence, sharding may
be necessary. If one shard can handle 10 000 requests per block, then we need 100 shards,
and hence, every shard needs only 40/100 = 0.4 Gbytes = 400 Mbytes of memory.

6.3 Specification of the Atomicity Partition

6.3.1 Parameters, Types, Constants, Functions

System identifier: α0

Type and unit identifier lengths: tidlen = 8, uidlen = 256

Summary value type V: N64

Summary trust base: V = 0

Summary check: γ ≡ 1

Unit types: U = {ato, fcr} (multi-unit atomic transactions, fee credit records).

Data types:

• Dato: tuples (count, nonce, begin, end, confirmed) where:
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1. count – number of component transactions involved of type N16

2. nonce – nonce of type N128

3. begin – block round number of type N64

4. end – block round number of type N64

5. confirmed – set of tuples (i, P′,Π), where i is the index of the target of P′ among
u1, . . . , um and Π is a proof that the transaction in the record P′ was executed in
the appropriate partition.

• Dfcr = (b, λ, ℓ, t), where

1. b ∈ N±64 is the current balance of this record, in fixed point format with 8 fractional
decimal digits

2. λ ∈ H is the hash of the last addFC, closeFC, lockFC, or unlockFC transaction
for this record

3. ℓ ∈ N64 is the lock status of the record; ℓ = 0 means the record is not locked,
any other value means it’s locked

4. t ∈ N64 is the minimum lifetime of this record

Summary functions:

1. Vs(D) = D.b for Dfcr, or 0 otherwise

2. FS (v, vL, vR) = v + vL + vR

3. FS (⊥, vL, vR) = vL + vR

Summary value of zero-unit: N[0I].V = 0

Transaction types: T = {con, fin, lockFC, unlockFC, addFC, closeFC} (confirm a trans-
action, finalize a transaction, lock a fee credit record, unlock a fee credit record, add fee
credit, close fee credit)

The fin transactions are never accepted from clients; these transactions can only be gen-
erated by validators as part of processing the con transactions.

6.3.2 Transactions

6.3.2.1 Confirm

Transaction order T = ⟨(α0, con, ι, A,MC), s, s f ⟩ to the atomicity partition with A =

(m, r, i, P′,Π), where:

1. m – number of transactions in the multi-unit transaction of type N16

2. r – nonce of type N128

3. i – sequence number of the confirmed transaction of type N16

4. P′ – transaction record of any type

5. Π – transaction proof

Transaction-specific validity condition ψcon(T, S ): does the following checks:

1. ExtrType(ι) = ato – target unit is an atomic transaction
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Table 14. Data fields of the con transaction record.

No Field Notation Type Predefined
value

1. system identifier α A α0

2. transaction type τ T con
3. unit identifier ι I -
4. transaction count A.m N16 -
5. nonce A.r N128 -
6. sequence number A.i N16 -
7. transaction record A.P variable -
8. transaction proof A.Π Πu

prim -
9. message timeout MC.T0 N64 -
10. maximum fee MC. fm N64 -
11. fee credit record iden-

tifier
MC.ι f I ∪ {⊥} -

10. owner proof s {0, 1}∗ -
11. fee authorization proof s f {0, 1}∗ ∪

{⊥}

-

12. actual fee MS . fa N64 -

2. A.m ≥ 2 and 1 ≤ A.i ≤ A.m

3. A.P contains a locking script φato(α0, ι, tb, te, . . .) with tb and te such that tb < S .n ≤ te,
where S .n is the current round number of the atomicity partition.

4. A.Π is a transaction proof of type Πu
prim that A.P is included in a block of the partition

and shard of A.P.

Actions Actioncon: for ⟨α0, con, ι, (m, r, i, P′,Π),MC, s, s f ⟩:

1. Parse tb and te from P′

2. If N[ι] = ⊥, then add a new unit ι with D = (m, r, tb, te, {(i, P′,Π)})

3. Else:

3.1 If m = N[ι].D.count, r = N[ι].D.nonce, tb = N[ι].D.begin, and te = N[ι].D.end
then:

3.1.1 N[ι].D.confirmed← N[ι].D.confirmed ∪ {(i, P′,Π)}
3.1.2 If confirmed contains confirmations for all m messages P1, . . . , Pm, then:

3.1.2.1 If ι = f (r, P̃1, . . . , P̃m) then add Pfs = ⟨fin, ι, 1⟩ to the current block.

3.1.2.2 If ι , f (r, P̃1, . . . , P̃m) then add Pfs = ⟨fin, ι, 0⟩ to the current block.

6.3.2.2 Fee Credit Handling

The lockFC (lock fee credit record), unlockFC (unlock fee credit record), addFC (add fee
credit), and closeFC (close fee credit) transactions are handled the same way as in the
money partition.
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6.3.3 Round initialization and completion

6.3.3.1 Round Initialization: RInitato

1. Delete obsolete records:

1.1 Find all such records:
I ← {ι : ExtrType(ι) = ato ∧ N[ι] , ⊥ ∧ N[ι].D.end < S .n}

1.2 For each ι ∈ I: DelItem(ι)

6.3.3.2 Round Completion: RComplato

1. Finalize expired transactions:

1.1 Find all such transactions:
I ← {ι : ExtrType(ι) = ato ∧ N[ι] , ⊥ ∧ N[ι].D.end = S .n ∧

|N[ι].D.confirmed| < N[ι].D.count}
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7 User-Defined Token Partition Type

7.1 Motivation and General Description

hierarchical type system

7.2 Specification

7.2.1 General Parameters

Unit types: U = {ftype, ntype, ftoken, ntoken, fcr} (fungible and non-fungible token types,
fungible and non-fungible tokens, fee credit records).

Unit data Du depends on the unit type as follows:

• Dntype = (sym, nam, ico, ιp, φs, φt, φi, φd), where

– sym is the symbol (short name) of this token type, up to 16 B in the UTF-8
encoding; note that the symbols are not guaranteed to be unique;

– nam is the optional name of this token type, up to 256 B in the UTF-8 encoding;
the names are not guaranteed to be unique either (only the type identifiers are);

– ico is the optional icon for this token type; if given, the icon definition consists
of a content type and up to 64 KiB of image data; for compatibility across
clients, PNG and SVG are the preferred image formats; for PNG, the con-
tent type should be ‘image/png’; for SVG, the UTF-8 text encoding should
be used and the content type should be ‘image/svg+xml’ for plain SVG and
‘image/svg+xml; encoding=gzip’ for compressed SVG;

– ιp ∈ I identifies the parent type that this type derives from; ιp = 0I indicates there
is no parent type;

– φs ∈ L is the predicate (subtype clause) that controls defining new subtypes of
this type;

– φt ∈ L is the predicate (mint clause) that controls creating new tokens of this
type;

– φi ∈ L is the invariant predicate (inherit bearer clause) that all tokens of this type
(and of subtypes of this type) inherit into their bearer predicates;

– φd ∈ L is the (inherit data clause) that all tokens of this type (and of subtypes of
this type) inherit into their data update predicates;

• Dntoken = (ιt, nam, uri, dat, φd, t, λ, ℓ), where

– ιt ∈ I identifies the type of this token;
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– nam is the optional name of this token, up to 256 B in the UTF-8 encoding; the
purpose of token names is to identify individual tokens within a collection;

– uri is the optional URI of an external resource associated with this token; if
given, this must comply with RFC 3986, assuming the UTF-8 text encoding; the
size of this field is not allowed to exceed 4 KiB;

– dat is the optional data associated with this token; this can be any data type
supported by the Alphabill platform, including a structure whose fields can in
turn be of any supported data type; the only restriction enforced by the platform
is that the size of this field is not allowed to exceed 64 KiB;

– φd ∈ L is the data update clause, which is the predicate that controls the update
to the data field;

– t ∈ N64 is the current partition round number of the last transaction with this
token;

– λ ∈ H is the hash of the last transaction order for this token;

– ℓ ∈ N64 is the lock status of the token; allows locking of the token at the beginning
of a multi-step protocol that needs the token to remain unmodified by other
transactions during the protocol execution; ℓ = 0 means the token is not locked,
any other value means it’s locked;

• Dftype = (sym, nam, ico, ιp, dec, φs, φt, φi), where

– sym is the symbol (short name) of this token type, up to 16 B in the UTF-8
encoding; note that the symbols are not guaranteed to be unique;

– nam is the optional name of this token type, up to 256 B in the UTF-8 encoding;
the names are not guaranteed to be unique either (only the type identifiers are);

– ico is the optional icon for this token type; if given, the icon definition consists
of a content type and up to 64 KiB of image data; for compatibility across
clients, PNG and SVG are the preferred image formats; for PNG, the con-
tent type should be ‘image/png’; for SVG, the UTF-8 text encoding should
be used and the content type should be ‘image/svg+xml’ for plain SVG and
‘image/svg+xml; encoding=gzip’ for compressed SVG;

– ιp ∈ I identifies the parent type that this type derives from; ιp = 0I indicates there
is no parent type;

– dec ∈ 0 . . . 8 is the number of decimal places to display for values of tokens of
this type;

– φs ∈ L is the predicate (subtype clause) that controls defining new subtypes of
this type;

– φt ∈ L is the predicate (mint clause) that controls creating new tokens of this
type;

– φi ∈ L is the invariant predicate (inherit bearer clause) that all tokens of this type
(and of subtypes of this type) inherit into their bearer predicates;

• Dftoken = (ιt, v, t, λ, ℓ), where

– ιt ∈ I is the type of this token;

– v ∈ N64 is the value of this token;

– t ∈ N64 is the current partition round number of the last transaction with this
token;
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– λ ∈ H is the hash of the last transaction order for this token;

– ℓ ∈ N64 is the lock status of the token; allows locking of the token at the beginning
of a multi-step protocol that needs the token to remain unmodified by other
transactions during the protocol execution; ℓ = 0 means the token is not locked,
any other value means it’s locked;

• Dfcr = (b, λ, ℓ, t), where

– b ∈ N±64 is the current balance of this record, in fixed point format with 8 fractional
decimal digits;

– λ ∈ H is the hash of the last addFC, closeFC, lockFC, or unlockFC transaction
for this record;

– ℓ ∈ N64 is the lock status of the record; ℓ = 0 means the record is not locked,
any other value means it’s locked;

– t ∈ N64 is the minimum lifetime of this record.

Summary functions:

1. Vs(D) = D.b for Dfcr, or 0 otherwise

2. FS (v, vL, vR) = v + vL + vR

3. FS (⊥, vL, vR) = vL + vR

Transaction types: T = {createFType, createNType, createFToken, createNToken,
transFToken, transNToken, lockToken, unlockToken, splitFToken, burnFToken, joinFToken,
updateNToken, lockFC, addFC, closeFC} (create a fungible/non-fungible token type, create
a fungible/non-fungible token, transfer a fungible/non-fungible token, lock/unlock a token,
split a fungible token, burn a fungible token, join fungible tokens, update a non-fungible
token, lock a fee credit record, add fee credit, close fee credit)

7.2.1.1 Notation

The transaction validity conditions in the following sections include evaluating multipart
predicates on multipart inputs. We define the result of evaluating the multipart predicate
π = (π1, π2, . . . , πn) on the multipart input s = (s1, s2, . . . , sm) as follows:

π(s) = (n = m) ∧ π1(s1) ∧ π2(s2) ∧ . . . ∧ πn(sn).

7.2.2 Create a Fungible Token Type

Transaction order P = ⟨(α, createFType, ι, A,MC), s, s f ⟩, A =

(sym, nam, ico, ιp, dec, φs, φt, φi, s), where

• sym is the short name of the new token type;

• nam is the optional full name of the new token type;

• ico is the optional icon of the new token type, given as a pair (typ, dat), where

– typ is the MIME content type identifying an image format, given as a string of up
to 64 B in the UTF-8 encoding;

– dat is a byte string up to 64 KiB in size, representing an image in the format
specified by typ;
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• ιp ∈ I identifies the parent type that the new type derives from;

• dec ∈ 0 . . . 8 is the number of decimal places to display for values of tokens of the
new type;

• φs ∈ L is the predicate (subtype clause) that controls defining subtypes of the new
type;

• φt ∈ L is the predicate (mint clause) that controls creating tokens of this type;

• φi ∈ L is the invariant predicate (inherit bearer clause) that all tokens of the new type
(and of subtypes of it) inherit into their bearer predicates;

• s ∈ L∗ is the input to satisfy the subtype clause.

Validity Condition

ΨcreateFType(P, S ) ≡
ExtrType(P.ι) = ftype ∧ S .N[P.ι] = ⊥ ∧
(P.A.ιp = 0I ∨ ExtrType(P.A.ιp) = ftype ∧ S .N[P.A.ιp] , ⊥) ∧
(P.A.ιp = 0I ∨ S .N[P.A.ιp].D.dec = P.A.dec) ∧
Π(P.A.ιp)(P.A.s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φs otherwise.

That is,

• ι identifies a fungible token type that does not yet exist,

• the new type either has no parent or the parent is an existing fungible token type,

• the new type either has no parent or displays the token values with the same number
of decimal places as the parent,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the subtype clauses along the type inheritance chain.

Actions

1. AddItem(P.ι, 1, (P.A.sym, P.A.nam, P.A.icm, P.A.ιp, P.A.dec, P.A.φs, P.A.φt, P.A.φi))

7.2.3 Create a Non-Fungible Token Type

Transaction order P = ⟨(α, createNType, ι, A,MC), s, s f ⟩, A =

(sym, nam, ico, ιp, φs, φt, φi, φd, s), where

• sym is the short name of the new token type;

• nam is the optional full name of the new token type;

• ico is the optional icon of the new token type, given as a pair (typ, dat), where

– typ is the MIME content type identifying an image format, given as a string of up
to 64 B in the UTF-8 encoding;
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– dat is a byte string up to 64 KiB in size, representing an image in the format
specified by typ;

• ιp ∈ I identifies the parent type that the new type derives from;

• φs ∈ L is the predicate (subtype clause) that controls defining subtypes of the new
type;

• φt ∈ L is the predicate (mint clause) that controls creating tokens of the new type;

• φi ∈ L is the invariant predicate (inherit bearer clause) that all tokens of the new type
(and of subtypes of it) inherit into their bearer predicates;

• φd ∈ L is the predicate (inherit data clause) that all tokens of the new type (and of
subtypes of this type) inherit into their data update predicates;

• s ∈ L∗ is the input to satisfy the subtype clause.

Validity Condition

ΨcreateNType(P, S ) ≡
ExtrType(P.ι) = ntype ∧ S .N[P.ι] = ⊥ ∧
(P.A.ιp = 0I ∨ ExtrType(P.A.ιp) = ntype ∧ S .N[P.A.ιp] , ⊥) ∧
Π(P.A.ιp)(P.A.s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φs otherwise.

That is,

• ι identifies a non-fungible token type that does not yet exist,

• the new type either has no parent or the parent is an existing non-fungible token type,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the subtype clauses along the type inheritance chain.

Actions

1. AddItem(P.ι, 1, (P.A.sym, P.A.nam, P.A.ico, P.A.ιp, P.A.φs, P.A.φt, P.A.φi, P.A.φd))

7.2.4 Create a Fungible Token

Transaction order P = ⟨(α, createFToken, ι, A,MC), s, s f ⟩, A = (φ, ιt, v, s), where

• φ ∈ L is the initial bearer predicate of the new token;

• ιt ∈ I identifies the type of the new token;

• v ∈ N64 is the value of the new token;

• s ∈ L∗ is the input to satisfy the mint clause.
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Validity Condition

ΨcreateFToken(P, S ) ≡
ExtrType(P.ι) = ftoken ∧ S .N[P.ι] = ⊥ ∧
ExtrType(P.A.ιt) = ftype ∧ S .N[P.A.ιt] , ⊥ ∧
P.A.v > 0 ∧
Π(P.A.ιt)(P.A.s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φt otherwise.

That is,

• ι identifies a fungible token that does not yet exist,

• the type of the new token is an existing fungible token type,

• the new token has non-zero value,

• the input s given in the transaction order satisfies the multipart predicate obtained by
joining all the mint clauses along the type inheritance chain.

Actions

1. AddItem(P.ι, P.A.φ, (P.A.ιt, P.A.v, S .n,H(P), 0))

7.2.5 Create a Non-Fungible Token

Transaction order P = ⟨(α, createNToken, ι, A,MC), s, s f ⟩, A = (φ, ιt, nam, uri, dat, φd, s),
where

• φ ∈ L is the initial bearer predicate of the new token;

• ιt ∈ I identifies the type of the new token;

• nam is the optional name of the new token;

• uri is the optional URI of an external resource associated with the new token;

• dat is the optional data associated with the new token;

• φd ∈ L is the data update clause of the new token;

• s ∈ L∗ is the input to satisfy the mint clause.

Validity Condition

ΨcreateNToken(P, S ) ≡
ExtrType(P.ι) = ntoken ∧ S .N[P.ι] = ⊥ ∧
ExtrType(P.A.ιt) = ntype ∧ S .N[P.A.ιt] , ⊥ ∧
Π(P.A.ιt)(P.A.s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φt otherwise.
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That is,

• ι identifies a non-fungible token that does not yet exist,

• the type of the new token is an existing non-fungible token type,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the mint clauses along the type inheritance chain.

Actions

1. AddItem(P.ι, P.A.φ, (P.A.ιt, P.A.nam, P.A.uri, P.A.dat, P.A.φd, S .n,H(P), 0))

7.2.6 Transfer a Fungible Token

Transaction order P = ⟨(α, transFToken, ι, A,MC), s, s f ⟩, A = (φ, v, ιt, η, λ, s), where

• φ ∈ L is the new bearer predicate of the token;

• v ∈ N64 is the value to transfer;

• ιt ∈ I identifies the type of the token;

• η ∈ {0, 1}∗ ∪ {⊥} is an optional nonce;

• λ ∈ H is the backlink to the previous transaction with this token;

• s ∈ L∗ is the input to satisfy the inherited bearer clause.

Validity Condition

ΨtransFToken(P, S ) ≡
ExtrType(P.ι) = ftoken ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
S .N[P.ι].D.v = P.A.v ∧
S .N[P.ι].D.ιt = P.A.ιt ∧
S .N[P.ι].D.λ = P.A.λ ∧
Π(S .N[P.ι].D.ιt)(s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φi otherwise.

That is,

• ι identifies an existing fungible token,

• the token is not locked,

• the value transferred is the value of the token,

• the token type in the transaction order matches the actual token type,

• the current transaction follows the previous valid transaction with the token,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the inherited bearer clauses along the type inheritance chain.
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Actions

1. SetOwner(P.ι, P.A.φ)

2. UpdateData(ι, f ), where f (D) = (D.ιt,D.v, S .n,H(P),D.ℓ)

7.2.7 Transfer a Non-Fungible Token

Transaction order P = ⟨(α, transNToken, ι, A,MC), s, s f ⟨, A = (φ, ιt, η, λ, s), where

• φ ∈ L is the new bearer predicate of the token;

• ιt ∈ I identifies the type of the token;

• η ∈ {0, 1}∗ ∪ {⊥} is an optional nonce;

• λ ∈ H is the backlink to the previous transaction with the token;

• s ∈ L∗ is the input to satisfy the inherited bearer clause.

Validity Condition

ΨtransNToken(P, S ) ≡
ExtrType(P.ι) = ntoken ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
S .N[P.ι].D.ιt = P.A.ιt ∧
S .N[P.ι].D.λ = P.A.λ ∧
Π(S .N[P.ι].D.ιt)(s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φi otherwise.

That is,

• ι identifies an existing non-fungible token,

• the token is not locked,

• the token type in the transaction order matches the actual token type,

• the current transaction follows the previous valid transaction with the token,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the inherited bearer clauses along the type inheritance chain.

Actions

1. SetOwner(P.ι, P.A.φ)

2. UpdateData(ι, f ), where f (D) = (D.ιt,D.nam,D.uri,D.dat,D.φd, S .n,H(P),D.ℓ)
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7.2.8 Lock a Token

Transaction order P = ⟨(α, lockToken, ι, A,MC), s, s f ⟩, A = (ℓ, λ, s), where

• ℓ ∈ N64 is the new lock status of the token;

• λ ∈ H is the backlink to the previous transaction with this token;

• s ∈ L∗ is the input to satisfy the inherited bearer clause.

Validity Condition

ΨlockToken(P, S ) ≡
(ExtrType(P.ι) = ftoken ∨ ExtrType(P.ι) = ntoken) ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
P.A.ℓ > 0 ∧
S .N[P.ι].D.λ = P.A.λ ∧
Π(S .N[P.ι].D.ιt)(s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φi otherwise.

That is,

• ι identifies an existing fungible or non-fungible token,

• the token is not locked,

• the new status is a “locked” one,

• the current transaction follows the previous valid transaction with the token,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the inherited bearer clauses along the type inheritance chain.

Actions

1. UpdateData(ι, f ), where

f (D) =

(D.ιt,D.v, S .n,H(P), P.A.ℓ) if ExtrType(ι) = ftoken
(D.ιt,D.nam,D.uri,D.dat,D.φd, S .n,H(P), P.A.ℓ) if ExtrType(ι) = ntoken

7.2.9 Unlock a Token

Transaction order P = ⟨(α, unlockToken, ι, A,MC), s, s f ⟩, A = (λ, s), where

• λ ∈ H is the backlink to the previous transaction with this token;

• s ∈ L∗ is the input to satisfy the inherited bearer clause.
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Validity Condition

ΨlockToken(P, S ) ≡
(ExtrType(P.ι) = ftoken ∨ ExtrType(P.ι) = ntoken) ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ > 0 ∧
S .N[P.ι].D.λ = P.A.λ ∧
Π(S .N[P.ι].D.ιt)(s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φi otherwise.

That is,

• ι identifies an existing fungible or non-fungible token,

• the token is locked,

• the current transaction follows the previous valid transaction with the token,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the inherited bearer clauses along the type inheritance chain.

Actions

1. UpdateData(ι, f ), where

f (D) =

(D.ιt,D.v, S .n,H(P), 0) if ExtrType(ι) = ftoken
(D.ιt,D.nam,D.uri,D.dat,D.φd, S .n,H(P), 0) if ExtrType(ι) = ntoken

7.2.10 Split a Fungible Token

Transaction order P = ⟨(α, splitFToken, ι, A,MC), s, s f ⟩, A = (φ, v, v′, ιt, η, λ, s), where

• φ ∈ L is the bearer predicate of the new token;

• v ∈ N64 is the amount to transfer;

• v′ ∈ N64 is the remaining value of source token;

• ιt ∈ I identifies the type of the token;

• η ∈
bitstr ∪ {⊥} is an optional nonce;

• λ ∈ H is the backlink to the previous transaction with this token;

• s ∈ L∗ is the input to satisfy the inherited bearer clause.
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Validity Condition

ΨsplitFToken(P, S ) ≡
ExtrType(P.ι) = ftoken ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
S .N[P.ι].D.v = P.A.v + P.A.v′ ∧
P.A.v > 0 ∧ P.A.v′ > 0 ∧
S .N[P.ι].D.ιt = P.A.ιt ∧
S .N[P.ι].D.λ = P.A.λ ∧
Π(S .N[P.ι].D.ιt)(s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φi otherwise.

That is,

• ι identifies an existing fungible token,

• the token is not locked,

• the initial value of the source token is equal to the transferred value plus the remaining
value,

• the value to be transferred and the remaining value are both non-zero,

• the token type in the transaction order matches the actual token type,

• the current transaction follows the previous valid transaction with the source token,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the inherited bearer clauses along the type inheritance chain.

Actions

1. ι′ ← NodeID(ftoken,PrndSh(ExtrUnit(P.ι), P.ι∥P.A∥P.MC))

2. AddItem(ι′, P.A.φ, (P.A.D.ιt, P.A.v, S .n,H(P), 0))

3. UpdateData(P.ι, f ), where f (D) = (D.ιt,D.v − P.A.v, S .n,H(P),D.ℓ)

Targets

For splitFToken transaction P, targets(P) = {P.ι, ι′}.

7.2.11 Join Fungible Tokens

Joining of fungible tokens collects the value represented by several tokens of the same
type into one token. The process consists of several steps:

• A target token is selected to receive the value of the joined tokens. The target token
may be any existing token, but it must not be changed by other transactions during
the execution of the joining protocol. To ensure that, the target token should be locked
using a lockToken transaction.
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• The source tokens are “burned” (deleted) using burnFToken transactions. To prevent
replay attacks, each of the burnFToken transactions must identify the selected target
token and its current state.

• The value of the source tokens is added to the target token using a joinFToken trans-
action. As this transaction completes the joining process, it also unlocks the target
token.

7.2.11.1 Burning Step

Transaction order P = ⟨(α, burnFToken, ι, A,MC), s, s f ⟩, A = (v, ιt, ι′, λ′, λ, s), where

• v ∈ N64 is the value to burn; note that for the proof of burn to be usable in a following
joinFToken operation, the resulting value of the target token must not overflow N64;

• ιt ∈ I identifies the type of the token to burn;

• ι′ ∈ I is the identifier of the target token;

• λ′ ∈ H is the current state hash of the target token;

• λ ∈ H is the backlink to the previous transaction with this token;

• s ∈ L∗ is the input to satisfy the inherited bearer clause.

Validity Condition

ΨburnFToken(P, S ) ≡
ExtrType(P.ι) = ftoken ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
S .N[P.ι].D.v = P.A.v ∧
S .N[P.ι].D.ιt = P.A.ιt ∧
S .N[P.ι].D.λ = P.A.λ ∧
Π(S .N[P.ι].D.ιt)(s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φi otherwise.

That is,

• ι identifies an existing fungible token,

• the token is not locked,

• the value to be burned is the value of the token,

• the type of token to burn matches the actual type of the token,

• the current transaction follows the previous valid transaction with the token,

• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the inherited bearer clauses along the type inheritance chain.

Actions

1. UpdateData(ι, f ), where f (D) = (D.ιt, 0, S .n,H(P),D.ℓ)
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7.2.11.2 Joining Step

Transaction order P = ⟨(α, joinFToken, ι, A,MC), s, s f ⟩, A = (P1, . . . , Pm,Π1, . . . ,Πm, λ, s),
where

• P1, . . . , Pm are the transactions that burned the source tokens;

• Π1, . . . ,Πm ∈ Π
u
prim are the transaction proofs of P1, . . . , Pm;

• λ ∈ H is the backlink to the previous transaction with the target token;

• s ∈ L∗ is the input to satisfy the inherited bearer clause.

Validity Condition

ΨjoinFToken(P, S ) ≡
ExtrType(P.ι) = ftoken ∧ S .N[P.ι] , ⊥ ∧
P.A.P1.α = . . . = P.A.Pm.α = αuser ∧

P.A.P1.τ = . . . = P.A.Pm.τ = burnFToken ∧
P.A.P1.ι < . . . < P.A.Pm.ι ∧

P.A.P1.A.ιt = . . . = P.A.Pm.A.ιt = S .N[P.ι].D.ιt ∧
P.A.P1.A.ι′ = . . . = P.A.Pm.A.ι′ = P.ι ∧
P.A.P1.A.λ′ = . . . = P.A.Pm.A.λ′ = P.A.λ ∧
VerifyTxProof(P.A.Π1, P.A.P1, S .T , S .SD) ∧
. . . ∧

VerifyTxProof(P.A.Πm, P.A.Pm, S .T , S .SD) ∧

S .N[P.ι].D.v + P.A.P1.A.v + . . . + P.A.Pm.A.v < 264 ∧

S .N[P.ι].D.λ = P.A.λ ∧
Π(S .N[P.ι].D.ιt)(s) = 1,

where

Π(ι) =

1 if 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φi otherwise.

That is,

• ι identifies an existing fungible token,

• the transactions P1, . . . , Pm were in this system,

• the transactions P1, . . . , Pm were burning transactions,

• burning transactions orders are listed in strictly increasing order of token identifiers
(in particular, this ensures that no source token can be included multiple times),

• the types of the burned source tokens match the type of target token,

• the source tokens were burned to join them to the target token,

• the burning transactions contain correct target backlinks,

• the burning transactions were valid transactions,

• the value of the joined token would not overflow N64,

• the current transaction follows the previous valid transaction with the token,
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• the input s given in the transaction request satisfies the multipart predicate obtained
by joining all the inherited bearer clauses along the type inheritance chain.

Actions

1. UpdateData(ι, f ), where
f (D) = (D.ιt,D.v + P.A.P1.A.v + . . . + P.A.Pm.A.v, S .n,H(P), 0)

7.2.12 Update a Non-Fungible Token

Transaction order P = ⟨(α, updateNToken, ι, A,MC), s, s f ⟩, A = (dat, λ, s), where

• dat is the new data to replace the data currently associated with the token;

• λ ∈ H is the backlink to the previous transaction with the token;

• s ∈ L∗ is the input to satisfy the token’s data update clause.

Validity Condition

ΨupdateNToken(P, S ) ≡
ExtrType(P.ι) = ntoken ∧ S .N[P.ι] , ⊥ ∧
S .N[P.ι].ℓ = 0 ∧
S .N[P.ι].D.λ = P.A.λ ∧
Π(S .N[P.ι])(S .N[P.ι].D.dat, P.A.dat, s) = 1,

where

Π(ι) =

1 if ι = 0I
Π(S .N[ι].D.ιp)∥S .N[ι].D.φd otherwise.

That is,

• ι identifies an existing non-fungible token,

• the token is not locked,

• the current transaction follows the previous valid transaction with the token,

• the data currently associated with the token, the new data to be associated with the
token, and the input s given in the transaction request satisfy the multipart predicate
obtained by joining all the token data update clauses along the type inheritance chain.

Actions

1. UpdateData(ι, f ), where f (D) = (D.ιt,D.nam,D.uri, P.A.dat,D.φd, S .n,H(P),D.ℓ)

7.2.13 Fee Credit Handling

The lockFC (lock fee credit record), unlockFC (unlock fee credit record), addFC (add fee
credit), and closeFC (close fee credit) transactions are handled the same way as in the
money partition.
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7.2.14 Round initialization and completion

7.2.14.1 Round Initialization: RInituser

• Zero Token Deletion

1. For each ι ∈ {ι : ExtrType(ι) = ftoken ∧ N[ι] , ⊥ ∧ N[ι].D.v = 0}:
1.1 DelItem(ι)

7.2.14.2 Round Completion: RCompluser

No transaction system specific completion steps.
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8 Alphabill Distributed Machine

8.1 Background

8.1.1 Definitions

Block is a set of transactions, grouped together for mostly efficiency reasons. At partition
level a block is an ordered set of transactions + proofs: UC and partition certificate. Root
Chain does not produce an explicit blockchain – its certificates are persisted as proofs
within the partition ledgers.

UC is Unicity Certificate.

We call UC a repeat UC if it has incremented round number for a particular shard/partition,
but the certified hash has not changed compared to UC of previous round.

All partition validators and Root Chain validators operate in rounds. Roughly, a round is
an attempt to produce a block.

A block extends another block by including its cryptographic hash as the hash of previous
block.

A partition’s validators are synchronized based on input from the Root Chain. There are
some fixed time-outs.

System has one Root Chain and an arbitrary number of partitions, which may be split into
arbitrary number of shards.

Within a partition/shard there are k validators with identifier ν, of which f might be faulty.
For the Root Chain k > 3 f . For partition α, kα > 2 f . We assume that all faulty validators are
controlled by a coordinated, non-adaptive adversary. We assume trusted setup (Genesis)
and authenticated data links (signed messages). We assume partially synchronous com-
munication model where after unknown time GST message delivery time is upper-bounded
by known ∆. We assume that in every partition and shard, at least one non-faulty validator
is able to persist its state.

A signature is denoted as s. Signed message with message name name is denoted as
⟨name | a, b, c; s⟩. Array of message fields is denoted as { f }.

Clients send transaction (tx) orders (txo). Payment is a special case of transaction.

8.1.2 Vocabulary

Transaction System is a set of rules and logic for defining units and performing transac-
tions with them.
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Partition implements an instance of a specific Transaction System. Partition is a dis-
tributed system, it consists of either a set of shards, or one or more partition valida-
tors.

Shard is a decomposition of a partition; all shards within a partition implement the same
transaction system, thus these shards are compatible. Every shard is a distributed
system: it consists of one or more shard validators.

Root Chain (also known as the Root Partition) implements a function within the Alphabill
Framework which guarantees uniqueness of the states of its partitions: assigns spe-
cific transaction system logic to these partitions, performs validation and correctness
checks and ensures consensus of individual validators. Root Chain generates Unicity
Certificates for identified partitions.

8.1.3 Scope

Implementation details of Root Chain’s atomic broadcast primitive (implementing the pro-
tocol Ordering) are not given. This is a modular component. Only safety-critical validation
rules are provided.

8.1.4 Repeating Notation

nr – round number of the Root Chain
nα – round number of transaction system α
kα – number of validators in partition α
ν – validator identifier, unique within a partition; set of partition’s validators is {νi}i∈{1,...,kα}

νl ← leaderfunc(·) – leader for this block production attempt
h – state tree root hash
h′ – previous state tree root hash

ensure(. . .) – function modelled after the Solidity language – if its argument evaluates to
true then nothing happens; if it evaluates to false then execution stops and function returns
0. Unlike Solidity, should be complemented with returning and logging informative errors.
Mostly used in message handlers for input validation.
f unction(a, b ← c) – default value of function arguments, like in Python language. If 2nd
argument is not specified by caller then parameter b obtains the value of expression c.

8.2 Partitions and Shards

8.2.1 Timing

A Partition is synchronized using Input Records in returned UCs. For a partition, a UC can
have the following options:

1. IR has not changed. Our partition can ignore this UC.

2. UC certifies an input from our partition, this input has never been certified before, and
round number is incremented. This UC finalizes a block and starts a new round.

3. Round number is incremented, but state root hash remains the same (repeat UC).
This UC starts another consensus attempt extending the same state as previous
(likely failed) one.
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4. UC is newer, certifying a future state. Indicates to a validator that it is behind the
others and must roll back the pending proposal and initiate recovery.

If the latest UC certifies a state of this partition, then this UC determines the leader and
starts a new round. While accepting incoming transactions, the leader starts assembling
his next block proposal, extending the latest block with a valid UC.

When timer t1 runs out the leader stops accepting new transactions, finishes state updates
and broadcasts a block proposal to followers and then sends UC request to the Root Chain.
See Figure 12.

Root Chain has a timer t2 for every partition; it is reset when a valid UC for this partition
is issued. If this timer has run out, then a repeat UC is issued with incremented round
number. This initiates a new consensus attempt for a partition. New round is executed with
a different leader. Nodes can determine which UC is latest based on round number. A
block proposal generated by the leader is accomplished with a UC and this UC must point
to this leader. Block is finalized when UC is embedded. The retry mechanism is illustrated
by Fig. 13.

Time

Valid 
UC t1 tick Valid 

UC

Follower2

Follower1

Leader

Client

Root
Chain t1

Cert Request

Block

Transaction

Proposal
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Figure 12. Successful Partition Round
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Node3

Node2
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Client

Root
Chain t1
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t1

t2

t1 tick

Leader

Leader

t2 tick

Figure 13. Partition Round attempt which did not produce a valid UC for this partition

8.2.2 Configuration and State

Configuration (managed by the Governance Process) of every validator includes:

• System Identifier (α), synonymous with partition id.
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• Shard Identifier (σ); present for multi-shard partitions.

• Validator Identifier (ν), unique within a partition/shard. There are kα validators in
partition α.

• Timeout value t1: after a validator sees a UC which appoints a leader, the leader
waits for t1 time units before stopping accepting new transaction orders and creating
a block proposal.

Communication layer:

• secret key used to sign messages

• related public key; known to other validators and the Root Chain

• public keys of other validators within the shard/partition

• communication addresses of other validators within the shard/partition

• communication addresses of the Root Chain validators

Data layer:

• Unicity Trust Base (T )

• other transaction system defining parameters; refer to Alphabill Platform Specifica-
tion, State of a Shard.

Variables:

• νl: Current round leader’s indentifier; Null if not known

• bu f : buffer with pending transaction orders

• N: State Tree

• cp: State Tree checkpoint, helps the State Tree to roll back to previously certified
state if a state extending attempt fails. Checkpoints can be released when a following
block gets finalized.

• luc: latest UC. Importantly, this structure encapsulates the round number and the
state hash of the last certified state, in a conveniently signed and versioned data
structure.

• log: log of verified and executed (but not final) transactions; respective changes in
State Tree can be rolled back by reverting it to checkpoint cp.

• pr: Pending UC Request waiting for UC; includes state tree hash and applied trans-
actions and round number as the time reference used for transaction validation. We
are avoiding situation where there can be multiple pending requests and speculative
validation; fresh UC invalidates all pending requests.
There may be multiple parallel pending requests in future extensions.

• B: the blockchain; append-only persistent shared ledger.

The variables are handled via state transitions like this:

1. Initial state. State tree is certified with ‘luc’; log and pr are empty; cp points to the
current state.
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Algorithm 1 State and Initialization
Constants:
α: Transaction System (Partition) Identifier
σ: Shard Identifier
ν: Node Identifier
kα: number of validators in the partition α
Variables:
νl ← Null: leader validator identifier of the current round; Null if not known
N ← {}: State Tree
cp← ⊥: State Tree Checkpoint
luc← Null: latest valid UC

▷ Implicitly, <round number to be certified> = luc.IR.n + 1
▷ Implicitly, <last certified hash> = luc.IR.h

bu f ← {}: input transaction orders buffer
log← {}: executed transaction log for proposal creation
pr ← Null: pending proposal corresponding to a BlockCertification request waiting for
UC
B: blockchain

function start_new_round(uc)
ensure(uc.IR.n > luc.IR.n)
ensure(uc.IR.h′ = luc.IR.h) ▷ Double checking
cp← Checkpoint(N)
RInit()
log← {}
pr ← {}
νl ← leaderfunc(uc)
luc← uc
reset_timer(t1)
if νl = ν then ▷ leader
process(bu f ) ▷ process for no longer than until t1 tick
bu f ← {}

else ▷ follower
if send_InputForwardMsg(l, bu f ) then

bu f ← {} ▷ Clean buffer on successful connection
end if

end if
end function

function leaderfunc(uc)
return {νi | i← integer(H(uc)) mod kα + 1} ▷ Simplest example

end function
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2. After applying any transaction(s): There are changes in the state tree; executed
transactions are recorded in propsoal (that is, cp is the starting point and N and log
are updated in sync). Processing of transactions continues.

3. Waiting for UC. This state is reached on t1 click, after sending BlockProposal mes-
sage (if leader) and sending UCReq request. There are changes in the state tree
on top of snapshot cp; executed transactions were recorded in log; Now, root hash
of the state tree and respective log are saved in pr, which extends luc. pr must be
preserved as long as it is possible that it gets certified by a UC. No new transactions
are processed in this state.

4. After receiving a UCMsg:

• UC certifies pr: block is finalized and added to B. OK to clear.

• UC is ‘repeat UC’: state is rolled back to cp; we assume simplified case that
consensus for prev. request is not possible any more and clean pr.

• UC certifies any round newer than the latest known UC: rollback and recovery
(independent state, consuming blocks until N is up-to-date with UC).

5. Loop to 1.

Please refer to Algorithm 1 for initialization.

8.2.3 Subcomponents
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Figure 14. Data Flow of Partition Leader Node
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8.2.3.1 Input Handling

Input Handling prioritizes latency (fast finality). It is optimized for the case where there is
enough processing capacity and blockspace available and transaction orders do not have
to be queued.

All validators accept transaction orders from clients. It is expected, that clients send trans-
action orders to many validators, as some may be byzantine. We assume that clients send
transaction orders to the right partition/shard; transaction orders sent to wrong partition will
be discarded. Optionally, implement QoS / overload protection. There is no quarantee of
execution – the validators may drop transaction orders to protect the system availability,
or when working close to maximum capacity. Synchronized clients may send transaction
orders directly to the expected leader.

Partition validators forward transaction orders, as they arrive, to respective shard/partition
leaders (next block proposal producers); while observing time-outs and discard expired
transaction orders. There can be a light-weight partial validation, referred as sanity check,
before continuing with the processing. If the leader is not known, or rejects messages
then keep transaction orders in a buffer and try again when the next leader is known and
accepts transaction orders. If the validator is the current leader then he processes available
transaction orders immediately. At the moment when a leader can not include transactions
into a proposal anymore, or have collected enough transactions to fill a block, it starts
rejecting incoming transaction orders from other validators.

A validator should retain a transaction order if accepted from a client or other validator; until
it is either expired or included into a finalized block. A validator may forget a transaction
order if accepted by another validator. A validator should not forward a transaction order to
a distinct validator more than once.

Validators may limit the number of times a transaction order is forwarded.

Please refer to Algorithm 2 for an example without optional functionality.

8.2.3.2 Block Proposal

Summary: On clock tick, stop immediate validation and execution of incoming Transaction
Orders. Validate and execute transaction orders from the Transaction Buffer, updating the
State Tree (N) and log for proposal creation. Executed transactions from log go into Block
Proposal, in the exactly same order they were validated and executed. Broadcast Block
Proposal to Follower Nodes. Create and send Uniqueness Certificate Request, retaining
necessary state in a Pending Block Proposal (pr) data structure.

A block must extend a previously certified block. If a party approves a block proposal, then
it also approves the entire history. This ensures safety of the protocol.

Pending Block Proposal (pr) must be stored in durable way before UCReq request can be
sent, by e.g. writing it to persistent storage. Losing all copies of pending block proposals,
while obtaining a UC for this block, would be an unrecoverable error.

Please refer to Algorithm 3 for details.

Note that a block can be without any transactions; however, this does not necessarily imply
h′ = h, as system-initiated “housekeeping” actions may have changed the state.
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Algorithm 2 Input Handling
upon message <TransactionMsg | P> do

if sanity_check(P) then
if νl = ν then ▷ this process is the leader
process({P}) ▷ Beware of parallel execution

else if νl , Null then ▷ someone else is the leader
if ¬send_InputForwardMsg(νl, P) then ▷ νl is the recipient

bu f ← bu f ∪ P ▷ Store on failure
end if

else ▷ Buffer transactions until leader is known
bu f ← bu f ∪ P

end if
end if

end upon

upon message <InputForwardMsg | txs> do
if νl = ν then ▷ this process is the leader

defer process(txs)
return “accepted”

else
return “reject”

end if
end upon

on event next_leader_elected do
prune_expired(bu f )
if νl = ν then ▷ this process is the leader
process(bu f ) ▷ Beware of parallel execution

else
if send_InputForwardMsg(νl, bu f ) then ▷ νl is the recipient

bu f ← {} ▷ Forget on successful send
▷ ... or keep in “forwarded” buffer and use when becoming the leader

end if
end if

end on
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Algorithm 3 Producing a Block Proposal
on event t1 do

if νl = ν then ▷ this validator is the leader
νl ← Null
RCompl() ▷ Transaction processing must have stopped by now
send_BlockProposalMsg(α, ν, luc, log) ▷ Sign and Broadcast
do_cert_req(log, ν)

end if
νl ← Null ▷ leader does not accept new transaction orders

end on
function do_cert_req(txs, l)

h′ ← luc.IR.h, n← luc.IR.n + 1, e← luc.IR.e
h← StateRoot(N), V ← DataSummary(N)
pr ← (n, e, h′, h, νl, log) ▷ Pending Block Proposal
b← (α, σ, luc.IR.hB, νl, txs,Null) ▷ temporary
hB ← block_hash(b)
if store_in_durable_way(pr) then
send_UCReq(α, ν, (n, e, h′, h,V, hB)) ▷ Sign and send

else
▷ Another validator may submit UCReq and this round gets finalized

end if
end function

8.2.3.3 Validation and Execution

Sanity checking of transaction orders is quick and lightweight validation, with the main
goal of protecting system resources by early detection of obvious garbage. All transaction
orders will be fully verified later before actual execution. Thoroughness of sanity checking
is a tuning parameter.

Validating transaction orders is performing their full verification, according to Alphabill Plat-
form Specification, section Valid Transaction Orders, and performing transaction system
specific additional checks. The transactions must appear in the proposal in the same or-
der. Transactions without interdependencies (i.e., affecting distinct units) can be executed
in parallel. Invalid transactions are not executed and not included into produced proposal.

The expiration of Transaction Orders is checked relative to partition/shard round number of
the UC the block proposal is trying to extend, incremented by one (luc.IR.n + 1).

Refer to Algorithm 4 for details. Note that fee processing is omitted for brevity.

8.2.3.4 Processing an Unicity Certificate and Finalizing a Block

Summary: On receiving a UC, block is finalized and a new round is started.

More specifically,

1. UC is verified cryptographically according to the Framework Specification. System
Identifier is checked.

2. The time-stamp in UC is checked for sanity: it must not “jump around” and it must
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Algorithm 4 Validate and Execute Transaction Orders
function sanity_check(P; t ← luc.IR.n + 1) ▷ Transactions will be fully validated later

return P.α = α ∧ P.σ = σ ∧ P.T0 > t
end function

function validate(P; t ← luc.IR.n + 1) ▷ default value of t
▷ see Platform Specification, Valid Transaction Orders

end function

function process(txs) ▷ Should be implemented as processing queue
for all P ∈ txs do

if validate(P) then
execute(N, P) ▷ Can be executed in parallel if non-related units
log← log ∪ P ▷ Retaining the ordering of input

end if
end for

end function

reasonably match the local time if it can be reliably determined. UC with a suspicious
time-stamp must be logged, and processing continues because rejecting a UC may
end with a deadlock of the partition/shard.

3. UC consistency is checked:

uc.IR.h = uc.IR.h′ ⇒ uc.IR.hB = 0H

4. UC is checked for equivocation, that is, for arbitrary uc and uc′, the following must
hold:

uc.IR.n = uc′.IR.n⇒ uc.IR = uc′.IR
uc.IR.h′ = uc′.IR.h′ ⇒ uc.IR.h = uc′.IR.h

∨ uc.IR.h′ = uc.IR.h ∨ uc′.IR.h′ = uc′.IR.h
uc.IR.h = uc′.IR.h⇒ uc.IR.h′ = uc′.IR.h′

∨ uc.IR.h′ = uc.IR.h ∨ uc′.IR.h′ = uc′.IR.h
uc.IR.h = uc′.IR.h⇒ uc.IR.hB = uc′.IR.hB

∨ uc.IR.hB = 0H ∨ uc′.IR.hB = 0H
uc.IR.hB = uc′.IR.hB , 0H ⇒ uc.IR.h = uc′.IR.h ∧ uc.IR.h′ = uc′.IR.h′

∧ uc.IR.V = uc′.IR.V
uc.IR.n = uc′.IR.n + 1⇒ uc.IR.h′ = uc′.IR.h

uc.IR.n < uc′.IR.n⇒ uc.Cr.n < uc′.Cr.n

On failing any of these checks, an equivocation proof must be logged with all neces-
sary evidence.

5. UC must have newer round number than the last one seen.

6. On unexpected case where there is no pending block proposal, recovery is initiated,
unless the state is already up-to-date with the UC.
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Algorithm 5 Processing a received Unicity Certificate
upon message <UCMsg | (uc)> do

if got_new_uc(uc) then
start_new_round(uc)

end if
end upon
function got_new_uc(uc)

ensure(uc , luc) ▷ ignore the same UC
ensure(valid(uc)) ▷ ‘ensure()’ returns 0 on failure
ensure(uc.Cuni.α = α)
if ¬CheckSanity(uc.Cr.t, uc.Cr.n, GetUTCDateTime()) then

Log(uc) ▷ rejecting a UC with strange time would break the shard
end if
ensure(non_equivocating_ucs(uc, luc))
ensure(uc.IR.n > luc.IR.n) ▷ check late to catch equivocation
if pr = Null then ▷ no pending UC request

if uc.IR.h , StateRoot(N) then
recovery(uc)

end if
else

if uc.IR.h = pr.h ∧ uc.IR.h′ = pr.h′ ∧ uc.IR.e = pr.e ∧ uc.IR.hB = pr.hB then
finalize_block(pr, uc)

else if uc.IR.h = pr.h′ then
Revert(N, cp)

else
Revert(N, cp)
recovery(uc)

end if
end if
return 1

end function

7. Alternatively, if UC certifies the pending block proposal then block is finalized.

8. Alternatively, if UC certifies the block which pending proposal tried to extend (‘repeat
UC’) then state is rolled back to the previous state.

9. Alternatively, recovery is initiated, after rollback. Note that recovery may end up with
newer last known UC than the one being processed.

10. Finally, on valid UC (validation reached the 3 alternatives above), a new round is
started.

Please refer to Algorithm 5 for details. Block Finalization is presented in Algorithm 7.

On arbitrary timeout / lost connection: re-establish connection to the Root Chain.

If a block can not be saved and made available during the finalization, then the round must
be not closed. This ensures that a) the block can be restored based on saved proposal and
UC during the recovery process, and b) the node can not extend the unsaved block.
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Algorithm 6 Checking two UC-s for equivocation
function non_equivocating_ucs(uc, uc′)

ensure(uc.IR.n ≥ uc′.IR.n) ▷ to simplify, assume that uc is not older than uc’
ensure(uc.Cr.nr > luc.Cr.nr)
if uc.IR.n = uc′.IR.n then

ensure(uc.IR = uc′.IR) ▷ on all failures log uc and uc’ as proof
end if
if uc.IR.h = uc.IR.h′ then ▷ state does not change

ensure(uc.IR.hB = 0H) ▷ ...then block is empty
else ▷ state changes

if uc.IR.h′ = uc′.IR.h′ ∧ uc′.IR.h′ , uc′.IR.h then
ensure(uc.IR.h = uc′.IR.h) ▷ a hash can be extended only with one hash

end if
if uc.IR.h = uc′.IR.h then ▷ ...and vice versa

ensure(uc.IR.h′ = uc′.IR.h′)
end if
if uc.IR.hB , 0H ∧ uc.IR.hB = uc′.IR.hB then

▷ non-empty block hash can only repeat in repeat UC
ensure(uc.IR.h = uc′.IR.h ∧ uc.IR.h′ = uc′.IR.h′ ∧ uc.IR.V = uc′.IR.V)

end if
end if
if uc.IR.n = uc′.IR.n + 1 then

if ¬(uc.IR.h = uc′.IR.h ∧ uc.IR.h′ = uc′.IR.h′ ∧ uc.IR.V = uc′.IR.V) then
ensure(uc.IR.h′ = uc′.IR.h) ▷ if not a repeat UC

end if
end if
return 1

end function

Algorithm 7 Finalizing a Block
function finalize_block(pr, uc)

B← (α, σ, luc.IR.hB, pr.l, pr.txs, uc)
ensure(block_hash(B) = uc.IR.hB)
B ← B ∪ B ▷ Adding a new block to shard’s blockchain

▷ If a block can not be retained and made available then the round must be not
closed
end function

8.2.3.5 Processing a Block Proposal

Summary: Upon receiving a BlockProposalMsg message, validate the signature and
header fields, execute transaction orders from the proposal, updating State Tree (N) and
Rollback Buffer (cp). Executed transactions go into Block Proposal. Create and send
Uniqueness Certificate message, producing a Pending Block Proposal data structure.

This procedure is performed by the non-leader validators. There are following steps (See
Fig. 15):
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Figure 15. Data Flow of a non-leader partition validator

1. Block proposal as a whole is validated. It must have valid signature, correct trans-
action system ID, valid UC, the UC must be not older than the latest known by the
validator. Sender must be the leader for the round started by included UC and match
the leader identifier field.

2. If included UC is newer than latest UC then the new UC is processed; this rolls
back possible pending change in state tree. If new UC is ‘repeat UC’ then update is
reasonably fast; if recovery is necessary then likely it takes some time and there is
no reason to finish the processing of current proposal.

3. If the state tree root is not equal to one extended by the processed proposal then
processing is aborted.

4. All transaction orders in proposal are validated; on encountering an invalid transac-
tion order the processing is aborted.

5. Transaction orders are executed by applying them to the state tree.

6. Pending certificate request data structure is created and persisted.

7. Certificate Request query (UCReq) is assembled and sent to the Root Chain.

Please refer to Algorithm 8 for details.

8.2.3.6 Ledger Replication

Relatively independent subsystem for serving and replicating ledger data. Pseudocode of
the service is provided in Algorithm 9.
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Algorithm 8 Processing a received Block Proposal
upon message <BlockProposalMsg | m = (α, ν, uc, txs; s)> do

ensure(valid(m))
ensure(m.ν , ν ∧ m.α = α)
ensure(valid(uc))
ensure(m.uc.IR.n ≥ luc.IR.n)
ensure(m.ν = leaderfunc(uc))
if m.uc.IR.n > luc.IR.n then

ensure(got_new_uc(m.uc)) ▷ newer UC must be validated and processed
if processing of new UC took too much time (recovering?) then

return start_new_round(m.uc)
else

luc← m.uc
end if

end if
h′ ← m.uc.IR.h
ensure(StateRoot(N) = h′)
ensure({ ∀ P ∈ m.txs | validate(P)})
cp← Checkpoint(N)
RInit()
for all P ∈ m.txs do
execute(N, P)

end for
RCompl()
do_cert_req(m.txs,m.ν)

end upon

Algorithm 9 Ledger Replication
upon message <LedgerReplication | n1, n2 ← luc.IR.n> do

return {Bi | Bi.UC.IR.n ∈ [n1 . . n2]}
end upon

On receiving blocks they are verified using embedded UC-s and cryptographic links. See
Platform Specification, function VerifyBlock().

8.2.4 Recovery Procedure

If a validator is behind then it must use recovery procedure to sync its state with other
validators, and obtain the latest UC for this partition, whose authoritative source is the Root
Chain.

Summary: Missing blocks are fetched from other validators, validated, and applied to the
state tree. A pending block proposal, if certified but not finalized, is applied and finalized.

It is assumed that the state tree is already rolled back by calling Revert(N, cp) if it had
transactions of a not finalized block applied.

In more details:
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Figure 16. Data Flow of an out-of-sync (recovering) Partition Node

1. Input UC is validated,

2. Missing blocks are fetched from other (random) validator(s),

3. Each block is verified: cryptographically using embedded UC, and for correct trans-
action system ID;

4. Each transaction within block is verified,

5. Transactions are applied to the state tree,

6. Last known UC is updated if a block has newer one.

7. Then, if there is a pending block proposal which can be finalized using freshly ob-
tained UC then it will be applied to current state and block is finalized.

Please refer to Algorithm 10 for full details. Recursive recovery is used to mark locations
where last-resort failover/retry happens. More intelligent failover and back-off mechanism
could be used, with gracious shut-down on unrecoverable situations.

8.2.5 Epoch Change

Partition Epoch Change is triggered by the Root Chain, by incrementing the Epoch number
field in Input Record.

The next partition round after finalizing a block with UC with incremented Epoch value
is procesed according to the configuration of the next epoch. Leader and validators are
selected according to next epoch configuration.

Rule. Partition Epoch Change
UC with incremented Epoch number in IR can be extended by a quorum of validators of
the next epoch.
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Algorithm 10 Partition Node Recovery
function recovery(uc) ▷ Assuming that Revert() is done by caller

ensure(valid(uc))
for all b ∈ send_LedgerReplicationRequest(luc.IR.n + 1) do ▷ to a random live validator

if VerifyBlock(b,T ) then ▷ Assuming blocks are ordered
ensure(b.α = α)
ensure(b.UC.IR.n > luc.IR.n)
ensure(StateRoot(N) = luc.IR.h = b.IR.h′)
ensure({ ∀ P ∈ b.txs | validate(P, luc.IR.n + 1)})
cp← Checkpoint(N)
RInit()
for all P ∈ b.txs do
execute(N, P)

end for
RCompl()
if StateRoot(N) , b.IR.h then

Revert(N, cp)
return recovery(uc) ▷ failover

end if
B ← B ∪ b
luc← b.UC

else
return recovery(uc) ▷ failover

end if
end for
if uc.IR.h′ = StateRoot(N) then ▷ apply pending request if possible

pr ← fetch_pr_from_persistent_storage(pr)
if pr , Null ∧ pr.h′ = uc.IR.h′ ∧ pr.h = uc.IR.h then

ensure(uc.IR.n = pr.n)
ensure({ ∀ P ∈ pr.txs | validate(P, pr.n)})
cp← Checkpoint(N)
RInit()
for all P ∈ pr.txs do
execute(N, P)

end for
RCompl()
if StateRoot(N) = uc.IR.h then
finalize_block(pr, uc)
luc← uc

else
Revert(N, cp)

end if
end if

end if
end function
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8.2.6 Protocols – Partition Nodes

8.2.6.1 Protocol TransactionMsg – Transaction Order Delivery

Users deliver their transaction orders to one or more validators (to account for byzantine
validators censoring or re-ordering transactions).

Message: ⟨TransactionMsg | P⟩

8.2.6.2 Protocol UCReq – Block Certification

If h′ is already ‘extended’ with UC then the latest UC is returned immediately via UCMsg
message; otherwise validation and UC generation continues, UC is returned via UCMsg
when available.

If h′ is unknown to Root Chain then the latest UC is returned immediately via UCMsg.

Returned UC can be ‘repeat’ UC for h′ which triggers next attempt using a different leader.
A partition validator can have multiple pending requests extending the same hash; latest
one is identified using greater nr, which must come from a valid UC. Partition validators
must not create multiple requests with the same nr.

This message “subscribes” the validator to receive UC messages for a certain period, ei-
ther a fixed number (2) or more precisely until the partition have successfully proposed a
following block, that is, there is another set of Root Chain validators which have received a
quorum of UCreq messages and therefore “taken over” the subscription.

Message: ⟨UCReq | α, ν, IR; s⟩

If a partition/shard validator has reason to suspect that Root Chain have generated a new
UC then he must try to fetch it by retrying.

8.2.6.3 Protocol UCMsg – returning of UC

Asynchronous response (in the sense of data flow) to UCReq; there may be many UCMsg
responses to one client-sent message, either UCReq or Ping.

Message: ⟨UC⟩

8.2.6.4 Protocol Subscription – subscribing to UCMsg messages

This message “subscribes” the validator to future UCMsg messages, without presenting a
UC Request in UCReq message. Synchronous response is the latest UC for requestor.

Subscription ends when the partition have successfully proposed a following block, that
is, there is another set of Root Chain validators which have received a quorum of UCreq
messages and therefore serving a subscription.

Query: ⟨SubscriptionMsg | α, ν, s⟩

Response: ⟨UC⟩

8.2.6.5 Protocol InputForwardMsg – Input Forwarding

Forward a set of transaction orders.

February 28, 2024 95 / 143



preliminary release

Message: ⟨InputForwardMsg | {P}⟩

8.2.6.6 Protocol BlockProposalMsg – Block Proposal

Leader broadcasts its block proposal to other partition validators.

Message: ⟨BlockProposal | α, νl, uc, txs; s⟩
where txs = {P}

8.2.6.7 Protocol LedgerReplication – Ledger Replication

Let’s assume that we have a separate layer of components implementing the ledger stor-
age. Entire ledger can be verified based on latest available block and every block can be
verified based on the Unicity Trust Base.

This protocol is provided by every functional partition validator and dedicated archive
nodes; arbitrary parties can join the latter.

(Full) Clients, possibly in the role of helper service for light clients, use the same protocol
to obtain blocks in order to provide their services.

Query: ⟨LedgerReplication | (α, n1, [n2]⟩

Response: ({B})

If 2nd number is missing then return everything till head. It is possible, that a reply misses
some newer blocks, either because the queried node is behind or it prefers to return blocks
by smaller chunks.

8.3 Root Chain

8.3.1 Summary

Leader-based BFT consensus based SMR. Roughly, Root Chain validators:

1. validate incoming UCReq requests: signature correctness, they must extend previous
partition UC, and transaction system specific checks must pass.

2. forward partition requests to the Root Chain leader

3. Root Chain leader verifies partition requests (incl. majority), produces UC tree, signs.

4. Root Chain leader sends requests (all UCReq requests including signatures) and
trees and signature to Root Chain validators.

5. followers verify partition requests (incl. majority), create trees, sign.

6. followers distribute their signatures to other Root Chain validators

7. on reaching k− f (there are k validators in the Root Chain) unique signatures all Root
Chain validators send ack to others

8. on reaching k − f ack-s all Root Chain validators commit and return responses to
partition validators.
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8.3.2 Timing

Root Chain serves many partitions/shards, each implemented by a cluster of parallel val-
idator machines. Operation cycles work like this:

1. Partitions operate in parallel:

• Partition validators send BlockCertification requests.

• Once there is a quorum of requests for transaction system α, the Root Chain
updates an entry in the array of input records.

2. Eventually Root Chain starts unicity certificate generation. Fills data structure. Com-
putes root. Signs. In distributed case this all takes some time.

3. Individual tree certificates and UCs are generated for participating transaction sys-
tems. Responses are returned to individual validators.

‘Eventually’ above is a compromise: 1) there is no sense to start a new round too fast, it is
necessary to collect some input requests to certify; 2) input requests with quorum should
be served as fast as possible to improve latency; 3) no need for further wait if all inputs are
present; 4) some inputs might struggle with quorum; no need to wait for the long tail; 5)
in order to generate ‘repeat UCs’ a round must be restarted after t2 time units even when
there are no requests.

Configuration parameters are: target block rate tb and partition wait t1.
System parameters are: average root Certificate generation time tr; average partition round
processing time from receiving UC to sending UC request, including t1 wait: tp; with stan-
dard deviation σp. There are k partitions.

Let m – how many Root Chain rounds fit into one partition round; m ≈ (tr + tp)/tb.

Let’s denote cumulative (normal) distribution of BlockCertification query messages with
Φσ(x). Assume m = 1, let’s find a minimum of (2 − Φσ(tb − (tr + tp))(tb) by adjusting tb and
t1.

Practical rule for optimizing the average latency (Fig. 17):
Start Root Chain round when completed quorum ratio is tb/∆ ≈ tb/m(tb − (tr + tp)). Note
that tb measures time from the moment when UC generation starts, thus it is circular and
a rolling average must be used Median can be found by ignoring overflow from previous
round and then waiting for completion of half of the quorums. Time from round start to next
median is roughly tr + tp. Adjust t1 if tb needs to be changed.

Even more practically:

1. Maintain a rolling average of tb and ∆

2. Do not count the pending overflow from previous round

3. After counting half of expected quorums (k/2) start timer for measuring ∆ and re-start
timer for measuring tb

4. After counting ktb/∆ unique quorums stop timer ∆ and start UC generation.

If the distribution gets too large it makes sense to increase m, that is, have more than one
core round per one average partition’s round.
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8.3.3 State

System configuration of every Root Chain validator:

• T – Unicity Trust Base

• A[] – System Identifiers

• SD[] – System Description Records

• k[] – Partition/shard cluster sizes for every system identifier

Communication layer:

• Node secret key used to sign messages

• related public key; known to other Root Chain validators via configuration manage-
ment/governance and to other parties via T

• public keys of other Root Chain validators (used by the underlying communication
layer)

• public keys of Partition Validators (usage captured by the opaque function valid())

• communication addresses of other Root Chain validators

• conn[][] – Connection contexts to return responses to validators which sent a Block-
Certification request, variable

State, must be persisted:

• n – Round Number (referred as nr outside the Root Chain context)

• e – Epoch Number (or er if the context is not clear)

• r− – Previous round’s Unicity Tree root hash

• IR[] – Certified Input Records for every partition

Variables

• req[][] – BlockCertification requests, indexed by system id and validator id

• changes[] – Validated Changes to IR, applied before UC generation

Time-outs and timers:
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• t2 – Root Chain waits for t2 time units before re-issuing a UC for a partition/shard.
This triggers a retry of partition/shard block creation, with another leader. There is
one timer instance per partition, referred as t2α for partition α.

• t3 – Triggers Unicity Tree re-calculation and UC response generation (monolithic
Root Chain only); Target Block Rate (tb) – Distributed Root Chain specific parameter

8.3.4 Analysis

8.3.4.1 Safety

Root Chain enforces that each block is ‘extended’ by one block only. This excludes conflict-
ing blocks (forks). Root Chain must not generate “equivocating” UCs (see Section 8.2.3.4
and Algorithm 6).

8.3.4.2 Liveness

Usual properties of partially synchronous communication model apply.

8.3.4.3 Data Availability

If a validator issues a BlockCertification call then it must not lose the block proposal (trans-
action data) until the block is finalized and committed to persistent storage.

The mechanism of ‘repeat UCs’ presents a challenge: one block may receive multiple
waves of extending attempts, initiated by subsequent ‘repeat UCs’. There are following
options:

1. Latest UC use is enforced strictly. If the Root Chain have issued a repeat UC, then
all BlockCertification requests must refer to this UC. Arriving and pending BlockCer-
tification requests, referring to older UC, are dropped.

2. All BlockCertification requests extending the current state are considered; if there
is a pending request from a validator then it is replaced by later request from this
validator, initiated by later repeat UC.

3. All BlockCertification requests extending the current state are considered and in-
cluded into pending request buffer; if one proposed new state achieves majority then
it wins; this state does not have to be the latest one.

On second and third option it is possible, that a shard/partition validator have issued multi-
ple BlockCertification requests and eventually an older one gets certified. Thus, validators
must retain all pending block proposals until one is committed.

These options provide somewhat better liveness of the protocol; in reality, if it is the case
we can safely assume that time-out t2 has too low value relative to system latencies. The
rest of this specification assumes option 1.

8.4 Monolithic Implementation

This section (Algorithms 11, 12, 13, 14) defines a monolithic, non-distributed Root Chain
implementation. It serves distributed partitions/shards. Functionally it is equivalent to dis-
tributed Root Chain (see Section 8.5).
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Algorithm 11 Global Parameters and Variables
Configuration:
T : Unicity Trust Base
A[]: System Identifiers
SD[]: System Descriptions
k[]: Cluster sizes of partitions
State:
n← 0 : Round number
e← 0 : Epoch number
r− ← Null: Previous round’s Unicity Tree root hash
IR[]← {⊥}: Input Records
Variables:
changes[]← {} Changes to IR, applied at the end of round, indexed by system id
req[][]← {}: BlockCertification requests, indexed by system id and validator id
conn[][]← {}: Partition/shard validator connections
Start Timers:
reset_timer(t3)
for a ∈ A do
reset_timer(t2a)

end for

8.4.1 UCReq Request Processing

UCReq Request Processing starts with checking if a newer UC is available; if yes then it is
returned immediately. This would initiate partition/shard recovery if necessary, and start a
new partition round.

If a request tries to extend an unknown state then the latest UC is returned immediately.

Next, the request is retained in request buffer if it is the first valid message; if the message
is a repeating message then processing stops.

Equal requests (comparing entire IR to make sure that other fields also match) from the
same partition/shard are counted. If a request achieves simple majority then respective
IR gets added to the changes array waiting for certification, at position indexed by parti-
tion/shard ID. If it is clear that a partition/shard can not converge to a majority agreement,
then the slot in changes array is filled with IR from the certified IR array, with incremented
round number and previous certified hash set the same as the certified hash. This pro-
duces a ‘repeat UC’ which, once delivered downstream, initiates a new shard/partition
consensus attempt.

See Algorithm 12.

8.4.2 Unicity Certificate Generation

Periodically, do the following:

1. In case a partition/shard has not shown progress for a period t2 since the last UC was
delivered then respective slot is populated with the field content of previous certified
IR array, with incremented round number. This produces a ‘repeat UC’.
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Algorithm 12 UCReq Message Handling.
upon message <UCReq | (α, ν, IR; s); context> do

ensure(valid((α, ν, IR; s)))
conn[α][ν]← context ▷ Network connection for returning messages
if IR.n , IR[α].n + 1 then ▷ Round is behind/ahead
send_UCMsg(context, get_uc(α))
return ▷ Stop processing

else if IR.h′ , IR[α].h then
send_UCMsg(context, get_uc(α)) ▷ Extending of unknown state
return ▷ Stop processing

end if
if req[α][ν] then ▷ Reject duplicate request

return
end if
ensure(tx-system-specific-checks(SD[α], IR)))
req[α][ν]← IR ▷ Add new message
c← |{ r ∈ req[α] | r = IR }| ▷ count of matching votes
if c > k[α]/2 then ▷ Consensus

changes[α]← IR
else if k[α] − |req[α]| + c < k[α]/2 then ▷ Consensus not possible

(n, e, h′, h,V, hB)← IR[α]
changes[α]← (n + 1, e, h′, h,V, hB) ▷ Produce ‘repeat UC’

end if
end upon

Algorithm 13 Obtaining an individual UC for a Transaction System
function get_uc(a) ▷ Assuming Unicity Tree and Unicity Seal are generated

return (IR[a],CreateUnicityTreeCert(a, χ,SD),Cr)
end function

2. The pending changes in changes array are applied to IR.

3. Based on the array of Input Records, build the Unicity Tree. Extract root hash value.
Obtain wall clock time. Create the Unicity Certificate.

4. For every record in IR changes array, respond to shard/partition based on request
context from the request buffer. Then, clean up req buffer, and reset respective t2
timer.

5. Finally, reset changes, update the previous root hash used for linking1, increment
Root Chain round number and reset the timer t3 which triggers the Unicity Certificate
Generation (Algorithm 14).

8.5 Distributed Implementation

Distributed Root Chain is bisimilar to monolithic Root Chain in the sense that they pro-
vide the same service implementing the same business logic. Distributed Root Chain is

1Note that linear hash-linking using r− illustrates the idea that some sort of cryptographic linking is
present; actual mechanism depends on the Root Chain implementation and used linking scheme.

February 28, 2024 101 / 143



preliminary release

Algorithm 14 Unicity Certificate Generation
on event t3 do ▷ Simplified, see section “Timing”

for a ∈ A do ▷ Process transaction system timeouts
if ¬changes[a] ∧ expired_timer(t2a) then

(n, e, h′, h,V, hB)← IR[a]
changes[a]← (n + 1, e, h′, h,V, hB) ▷ Produce ‘repeat UC’

end if
end for
for (a, ir) ∈ changes do ▷ Apply changes

ensure(IR[a].n + 1 = ir.n) ▷ Double-checking
ensure(IR[a].h = ir.h′) ▷ Double-checking
ensure(IR[a].e ≤ ir.e)
IR[a]← ir

end for
χ← CreateUnicityTree(A,SD,IR)
r ← χ(⌊⌋)
t ← GetUTCDateTime()
Cr ← CreateUnicitySeal(n, t, r−, r; skr)
for all a ∈ changes do

req[a]← []
uc← get_uc(a)
for all connection ∈ conn[a] do ▷ respond to all nodes in a cluster, in parallel
send_UCMsg(connection, uc) ▷ subscriptions expire - see protocol desc.

end for
reset_timer(t2a)

end for
changes← {}
r− ← r
n← n + 1
reset_timer(t3)

end on

Algorithm 15 “SubscriptionMsg” message handling
upon message <SubscriptionMsg | (α, ν; s); context> do

ensure(valid((α, ν; s)))
conn[α][ν]← context ▷ Network connection for returning messages
return get_uc(α)

end upon
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Byzantine fault tolerant. It uses the SMR (State Machine Replication) concept.

ν1 ν2 νr
1 νr

l

UCReq
UCReq

IRChangeReq

atomic broadcastatomic broadcast

validation validation

UCMsg
UCMsg

Figure 18. Message flow (simplified)

The messaging between a partition and the Root Chain is illustrated by Figure 18, where a
partition with two validators ν1 and ν2 requests a UC. Root chain is also depicted with two
validators, the next leader after reaching a quorum of partition requests is νr

l .

8.5.1 Summary of Execution

The summary follows the processing flow of a UC request by a Root Chain validator. The
flow is illustrated in Fig. 19; loosely moving counter-clockwise.

8.5.1.1 Node Selection

In order to use the distributed root chain, partition validators must choose an appropri-
ate subset of Root Chain validators to communicate with. The set must be shared by all
shard/partition validators during one partition round; on receiving a “repeat UC”, the val-
idators must communicate with a different subset. The number of validators in this set is
a tuning parameter: balances between availability and overhead. 2-3 validators is a good
starting point. This number (in the sense of delivering messages in parallel) does not have
security implications, as produced quorum sets retain partition validator signatures which
can be verified independently. UC responses must be checked for equivocation.

If a partition validator haven’t received a UC-s from chosen Root Chain validators within
2×t2 then it sends SubscriptionMsg requests to random other Root Chain validators. This
ensures eventual synchronization if the firstly chosen validators happen to be faulty.

8.5.1.2 UCReq Validation

No difference from Monolithic Implementation, please refer to Algorithm 12 for details. If
available, or on invalid request, UC is returned immediately by the same Root Chain val-
idator.
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Figure 19. Data-flow of a Distributed Root Chain Node

8.5.1.3 Partition Quorum Check

Partition/shard Quorum Check is the same as on Monolithic case (Alg. 12). If a quorum is
achieved or considered impossible, then a message is assembled (IRChangeReq), which
includes all UCReq messages, and forwarded to the next Root Chain leader, using the
Atomic Broadcast submodule.

8.5.1.4 IR Change Request Validation

The request must be validated analogously to the Algorithm 8.

8.5.1.5 Proposal Generation

Leader collects all unique IR change requests and assembles the block proposal, which
includes changed IR-s and a justification for each IR change request. Next, if a particular
IR has not been changed during t2 timeout for this partition then the leader initiates “repeat
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UC” generation by including a specific record into the block proposal. There is no explicit
justification, followers can validate timeouts based on their own timers.

In a proposal there can be up to one change request per partition.

Due to the pipelined finality, a proposal should not include IR change requests for slots with
a valid IR change request in immediately preceding round.

Finally, the leader signs the proposal and broadcasts it to other Root Chain validators.

8.5.1.6 Proposal Validation

On receiving a proposal, validator validates it. There are consensus-specific checks. Every
IR change request is validated based on its kind; base rules are presented by Algorithm 8.
Summary of the cases:

Quorum achieved The justification must prove the achievement of consensus by a parti-
tion. More than half of the partition validators must have coherent votes.

Quorum not possible The justification proves that there are enough conflicting votes to
render the consensus impossible.

t2 timeout The message states, that its timer have reached the timeout; all validators can
confirm the timeout based on their own clocks, allowing a little drift.

After validating the proposal and checking the Voting Rule, the validator signs its vote data
structure and sends it to the next leader in pipeline.

On encountering unexpected state hash the recovery process is initiated (see Sec-
tion 8.5.2.1).

8.5.1.7 State Signing

On assembling a Quorum Certificate (QC) with enough votes and verifying the Commit
Rule the leader modifies state: for every newly certified IR element it updates its last UC
array.

8.5.1.8 UC Generation

If a leader updates the last UC array element then it returns UCMsg responses to all pend-
ing shard/partition validators.

QC is included to HotStuff message pipeline, so it is broadcast to other validators (together
with the new proposal produced by this validator). On seeing new QC and knowing re-
certified IRs, other validators update their last UC arrays (the state).

8.5.2 Proposal

Proposal is a signed set of IR change requests, supplemented with proofs–the necessary
number of signed partition validator messages (justification). There are following options:

• Change requests with justifications.

• Repeat UC request where consensus is considered impossible.

• Repeat UC request on t2 timeout of a partition.
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8.5.2.1 State Synchronization

A Root Chain validator must have up-to-date vector of Input Records of all partitions/shards.
There is no persistent block storage. Returned Unicity Certificates, certifying IRs, are pos-
sibly persisted within partition blocks.

The state includes necessary meta-data like the round number. This is provided by includ-
ing the Unicity Seal, which also authenticates the IR vector.

State may include atomic broadcast module specific data, e.g. uncommitted round infor-
mation.

8.5.3 Atomic Broadcast Primitive

The Atomic Broadcast primitive is instantiated using an adaptation of HotStuff consensus
protocol. The adaptation is optimized towards better latency on good conditions. Therefore,
a “2-chain commit rule” is used. Changes and tweaks wrt. the original HotStuff paper are:

• “2-chain commit rule”

• Timeout Certificates for view change. This induces quadratic communication com-
plexity on faulty leader, but enables the 2-chain rule instead of 3-chain.

• QC component votes go to the next leader directly and the next leader assembles
QC.

• Use of aggregated signatures (instead of threshold signatures)

More formally, critical elements of the operation of a HotStuff-derived algorithm are speci-
fied by the following rules.

Let n denote round number, B – block, QC – Quorum Certificate, TC – Timeout Certificate.

Rule 1. Voting Rule
B.n > last vote round
B.n = B.QC.n + 1 ∨ (B.n = TC.n + 1 ∧ B.QC.n ≥ max(TC.tmo_high_qc_round))

Rule 2. Timeout Rule
n ≥ last vote round
(n = QC.n + 1 ∨ n = TC.n + 1) ∧ QC.n ≥ 1-chain round

Rule 3. Commit Rule
It is safe to commit block B if there exist a sequential 2-chain B ← QC ← B′ ← QC such
that B′.n = B.n + 1.

Please refer to the following papers for more details:

1. HotStuff: BFT Consensus in the Lens of Blockchain

2. DiemBFT v4: State Machine Replication in the Diem Blockchain

The concepts used in this specification map to the concepts used in the HotStuff and
DiemBFT papers as follows:

State: Vector of Input Records

February 28, 2024 106 / 143

https://arxiv.org/abs/1803.05069
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf


preliminary release

State Authenticator: State is identified by the root hash of Unicity Tree.

Block Proposal: List of changes to Input Records, with justifications; or a proposal to
switch epochs.

Block: There are no (explicit) blocks. The set of Input Records can be seen as the cumu-
lative state after applying all previous (virtual) blocks. Unicity Certificates are prop-
agated downstream to partitions where they could be saved as part of partition or
shard blocks. Node implementation is encouraged to produce an audit log with all
the block proposal payloads.

Blockchain: There is no such thing as the Root Chain Blockchain. However, Unicity Trust
Base is somewhat blockchain-like: it gets a new entry added once per Root Chain
epoch, and similarly to block headers it can be interpreted as the Root of Trust.

8.5.3.1 Round Pipeline

Committing the payload happens across many rounds due to the pipelined nature of Hot-
Stuff. In consecutive rounds, the flow is like this:

1. vector of IR change requests (payload of the proposal message)

2. updated IR-s (node block-tree) and Unicity Tree root (exec_state_id of a vote mes-
sage)

3. committed Unicity Tree Root (commit_state_id of a vote message).

The output is commit_state_id from a Quorum Certificate which was formed by combining
vote messages. QC is used to produce the Unicity Seal.

8.5.3.2 Pacemaker

Pacemaker is a module responsible for advancing rounds, thereby providing liveness.
Pacemaker sees votes from other validators and processes local time-out event.

Pacemaker either advances rounds on seeing a QC from the leader or on no progress, on
seeing a TC. On local timeout or seeing f + 1 timeout messages a validator broadcasts
signed TimeoutMsg message. TC is built from 2 f + 1 distinct TimeoutMsg messages. All
messages must apply to currently known HighestQC.

The Root Chain should not tick faster than configured Target Block Rate. In order to throttle
the speed, there is deterministic wait performed by leaders at every round.

The wait must be reasonably small to not trigger TimeoutMsg messages from other valida-
tors.

8.5.3.3 Leader Election

Initially, a round-robin selection algorithm is used. In the roadmap there is DPoS stake
weighted, unpredictable leader schedule.

Reputation is taken into account while producing per-epoch validator set assignments, for
lowering the chance of inactive or unstable validator becoming a leader. One validator
should not be the leader in two consecutive rounds.
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Example: Take all validators. Remove one or more (fixed number) of the previous leaders.
Remove all validators who did not participate in creation of the latest QC or TC. Pick one
pseudo-randomly, and deterministically across all the validators, from the remainder.

8.5.3.4 Root Chain Epoch Change

In order to facilitate a dynamic, responsive Root Chain, it is necessary to adjust its param-
eters on the fly. In particular, it is necessary to add new validators and retire some existing
ones to maintain a healthy validator set, due to potentially dynamic requirements and the
operating environment.

The configuration can be changed once per epoch. The source information comes from a
Governance Process whose output is Validator Assignment Records (Table 17).

Any Root Chain protocol leader can initiate an epoch change, given it has received the
Governance Decision. The procedure works as follows:

1. The leader produces a proposal where the usual payload is replaced by Epoch
Change Request (Table 15);

2. Validators who approve the epoch change continue with usual flow and do not include
usual payload until the Epoch Change Request is committed.

3. Next round after committing an Epoch Change Request is the first round of this
epoch: Epoch in BlockData is incremented; and execution continues by the updated
set of validators.

Table 15. Root Chain Epoch Change Request.

No Field Notation Type
1. Epoch number e N64

2. Validator identifiers and stakes {ν, bν}e {({0, 1}∗,N64)}
3. Quorum size (Voting power) ke N16

4. Hash of state summary r H

5. Hash of governance decision hgov H

6. Hash of previous record he−1 H

7. (attached) Governance Decision (Table 18)

Fields 1, 2, 3 are copied from the Governance Decision. Governance Decision is a “justi-
fication”: it is used as helper data for validators, but not included into the finalized record
and resulting entry in the Unicity Trust Base. An implementation may choose to rely on
alternative chnnels for distributing Governance Decisions.

Root Chain’s epoch change updates the Unicity Trust Base. On record-oriented Unicity
Trust Base, the new record becomes part of Root Validator’s state (see section 8.5.6.7);
and the new record gets propagated to Partition validators together with the next Unicity
Certificate, as an extra field of the UCResp message.

Rule. Root Chain Epoch Change
For every proof, the Epoch Number in its Unicity Certificate’s Unicity Seal must point to the
entry in Unicity Trust Base which can be used for this proof’s verification.
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Validators must not execute invalid Governance Decisions. Instead, the latest valid one
must be used, whenever available.

If there are multiple Governance Decisions, then the latest valid one must be executed.

8.5.4 Controlling Partition Epochs

Root Chain triggers partition epoch changes. This happens in following steps:

1. RC validators obtain Governance Decisions for the next epoch of a partition.

2. If an RC Leader includes an Input Record Change Request of a partition into a pro-
posal and there is a pending epoch change of this partition, then the governance
decision is included to the Request.

3. Presence of Governance Decision is the signal that Epoch should be incremented.
Included governance decision is validted, and if valid then epoch number in IR is
incremented. All other IR changes are validated and applied as well.

4. IR-s get certified.

5. New UC is returned to the partition.

6. Partition’s configuration is updated: quorum size (voting power needed for consen-
sus), list of validators. This changes RC’s validation rules: the next UC Request must
be presented by a valid quorum of next epoch’s partition validators.

Rule. Partition Epoch Change
If a partition’s state is certified by a UC with incremented Epoch number in IR, then the next
partition round’s requests get validated by the new epoch’s configuration.

For the clarity of presentation, epoch handling is not present in provided pseudocode. It
supports the lower layer functionality of dynamic configuration changes.

8.5.5 Data Structures

Below is an informal illustration on how Alphabill data structures integrate to HotStuff con-
sensus primitive; in ABNF format2. The structures document the distributed, dynamic Root
Chain.
; defined above
UC = IR UnicityTreeCertificate UnicitySeal
IR = PreviousHash Hash BlockHash SummaryValue RoundNumber SumOfEarnedFees
UnicityTreeCertificate = SystemIdentifier *SiblingHash SystemDescriptionHash

; interface:
UnicitySeal = RootChainRoundNumber Epoch Timestamp PreviousHash Hash *Signatures ;

Cr = (nr , tr , r−, r; s)
; where |Signatures| = quorumThreshold > 2f

; internals:
LedgerCommitInfo = UnicitySeal
QC = VoteInfo LedgerCommitInfo *Signatures

VoteInfo = RoundInfo
RoundInfo = RoundNumber Epoch Timestamp ParentRoundNumber CurrentRootHash

; rc messages:
VoteMsg = VoteInfo LedgerCommitInfo HighQC Author Signature

2https://tools.ietf.org/html/rfc5234
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ProposalMsg = BlockData [LastRoundTc] Signature
BlockData = Author Round Epoch Timestamp Payload AncestorQC
Payload = *IRChangeReq | RCEpochChangeReq
IRChangeReq = SystemIdentifier CertReason *BlockCertificationRequest

[EpochChangeJustification] SenderSignature ; presence of justification ==>
epoch++

RCEpochChangeReq = Epoch *(NodeID Pubkey Stake) QuorumThreshold StateHash GovDecisionHash
PreviousEntryHash SenderSignature [GovDecision]

; evolving trust base:
RootTrustBase = *RootTrustBaseEntry
RootTrustBaseEntry = Epoch *(NodeID Pubkey Stake) QuorumThreshold StateHash GovDecisionHash

PreviousEntryHash *Signatures

TimeoutMsg = Timeout Author Signature
Timeout = Epoch Round HighQC LastTC

; HighQC - highest known QC of the validator
; LastTC - if HighQC is not from prev. round then there must be TC of prev. round

TC = Timeout *Signatures ; 2f+1 Signatures

CertReason = ’quorum’ | ’quorum-not-possible ’ | ’t2-timeout’ ; flags in appropriate encoding

; partition-rc messages
BlockCertificationRequest = SystemIdentifier NodeIdentifier IR RootRoundNumber Signature
; if prevStateTreeHash is already ’extended’ with UC then return latest UC immediately.
; otherwise validation and cert. generation continues, cert is returned once available.
; Returned UC can be repeated cert for prevStateTreeHash which triggers next attempt using different

leader
; a validator can have multiple pending requests extending the same hash; latest one is identified using

IR.n

BlockCertificationResponse = UC [RootTrustBaseEntry] ; may be sent without corresponding request

; rc helpers:
GetStateMsg = NodeId ; id of the validator requesting the state
StateMsg = *UC CommittedHead BlockNode RootTrustBaseEntry
CommittedHead = BlockNode = RecoveryBlock
RecoveryBlock = BlockData *InputData QC CommitQC
InputData = SystemIdentifier IR Sdrh

; Subscription - Subscribe to BlockCertificationResponse messages, while obtaining the latest UC for
synchronization

SubscriptionMsg = systemIdentifier nodeIdentifier signature ;
; this request provides or updates validator connection parameters at
; transport layer so that Root can return UCMsg messages

SubscriptionResp = UC ; response: latest UC for the system, returned synchronously

8.5.6 Root Chain Implementation Specific Shared Data Structures

8.5.6.1 Versioning

The content of Unicity Seal and Unicity Trust Base, globally used data structures across the
Alphabill Platform, depend on Distributed Root Chain implementation details. These data
structures must be versioned to accommodate necessary iterative changes while the Root
Chain implementation roadmap is being executed. That is, T = (v, ·) and Cr = (v, ·), where
v is the version number and the rest depends on the version. In the following sections, we
assume that a section shares the same version number and it is omitted for brevity.

Accordingly, the function VerifyUnicitySeal must be able to verify a recent subset of Unicity
Seal versions, based on an authentic copy of the up-to-date Unicity Trust Base. This can
be imagined as a wrapper, where the version number of input chooses the right implemen-
tation.
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8.5.6.2 Evolving

Unicity Trust Base itself evolves (e.g., new records are added, while format/version stays
the same) when the Root Chain validator set changes. Every evolved copy of Unicity Trust
Base is cryptographically verifiable based on an older authentic copy of the Unicity Trust
Base.

We denote the initial, authentic3 Unicity Trust Base as Tbase and updated Unicity Trust Base
as T , and for each version of data structures define the function

VerifyUnicityTrustBaseTbase
(T ) .

For every supported version of proofs an implementation of VerifyUnicitySeal and the rele-
vant Trust Base must be provided. Only the latest version of Unicity Trust Base can evolve.

At the launch, the system is bootstrapped to a genesis state where the content of Unicity
Trust Base, together with Genesis Blocks, are created via some off-chain social consensus
process. The relevant data structures are the same, while references to previous states
and signatures created by previous states are hard-coded to zero values.

8.5.6.3 Monolithic, Static Root Chain

We start with one Root Chain validator, which does not change (and can not change its
keys).

• T = (pk) ,
where pk is the public key of the Root Chain.

• Cr = (nr, tr, r−, r; s) ,
as defined in the Platform Specification; s is a digital signature created using Root
Chain’s secret key.

function VerifyUnicitySeal(r,Cr,T )
return (r = Cr.r ∧ VerT .pk(Cr,Cr.s)) ▷ calculated over all fields except signature

end function
function VerifyUnicityTrustBase(Tbase,T )

return (Tbase = T ) ▷ No changes are allowed
end function

8.5.6.4 Monolithic, Dynamic Root Chain

In the case of dynamic Root Chain the validator(s) can change at epoch boundaries. The
identifier (public key) of new validator is signed by the current one, and this signed record
is appended to the Unicity Trust Base.

• Te = (e, pke; s)
is Unicity Trust Base Record, where s = Sigske−1

(Te) is a cryptographic signature over
verification record of epoch e (calculated over all fields except signature), signed by
the previous epoch’s secret key of the Root Chain

3Authenticity is guaranteed by e.g., off-band verification of the Genesis Block and embedding the newest
possible Unicity Trust Base into the verifier code during release management process, analogously to certifi-
cate pinning.
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• T = (T j,T j+1, . . . ,Tk) ,
where j is the first epoch and k is the latest epoch supported

• Cr = (nr, tr, r−, r; (s, e))
as defined in the Platform Specification; s is a cryptographic signature created using
Root Chain’s secret key of the epoch e.

function VerifyUnicitySeal(r,Cr,T )
if r , Cr.r then

return 0
end if
T = T .TCr.e

if T = ⊥ then
return error ▷ No record in trust base for the epoch

end if
return (VerT.pk(Cr,Cr.s) = 1) ▷ calculated over all fields except signature

end function

Note that the caller must ensure that a relevant record is present in Unicity Trust Base,
that is, ∃ i : T .Ti.e = Cr.e. Obtaining a fresh Unicity Trust Base is covered by the Chapter
Alphabill Anterior.

function VerifyUnicityTrustBase(Tbase,T )
T = Tbase.T |Tbase | ▷ last trusted record
if T.e < T .T1.e − 1 then

return error ▷ not a continuous chain
end if
if VerT.pk(T .TT.e+1,T .TT.e+1.s) = 0 then

return 0
end if
for e ∈ {T.e + 2 . .T .T |T |.e} do

if VerT .Te−1.pk(T .Te,T .Te.s) = 0 then
return 0

end if
end for
return 1

end function

For efficiency, the user must cache the verification results. For example: 1) at the startup,
the bundled trust base is checked for consistency, and 2) each time an evolved trust base
is encountered, a) it is checked for equivocation, b) if the trust base is newer than the base
and verified using the function VerifyTrustBase, then the base trust base is updated with
new records from the new trust base (or substituted with the latest version if the implemen-
tation is accumulator-like).

This version is illustrative and not for implementation.

8.5.6.5 Distributed, static Root Chain

Unicity Trust Base is a map of Root Chain validator identifiers to validator public keys, and
a number q which specifies the required quorum size, i.e.,
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• T = ({(i, pki) | i← 1 . . . νr}, q) where q ≥ νr − f ,

• Cr = (nr, tr, r−, r; s) where s = {(i, si) | i ∈ (1 . . νr)} and |s| = q .

Unicity Trust Base does not change as the Root Chain configuration is static.
function VerifyUnicitySeal(r,Cr,T )

if r , Cr.r then
return 0

end if
if |Cr.s| , T .q then ▷ All signatures of distinct validators

return 0 ▷ Wrong number of signatures
end if
for (i, s) ∈ Cr.s do

if (VerT .pki
(Cr, s) = 0) then ▷ calculated over all fields except signature

return 0 ▷ Invalid signature
end if

end for
return 1 ▷ Success

end function

8.5.6.6 Distributed Root Chain, aggregated signatures

This is an optimization, reducing the sizes of produced proofs and the trust base. The un-
derlying primitive implements the “non-interactive, accountable subgroup multi-signature”,
allowing identification of all parties whose (part-) signatures are aggregated into a final,
aggregate signature. On the case of aggregatable signature schemes, the m-of-n aggre-
gation of public keys is non-trivial though4, thus, it may be implemented further down the
roadmap.

Unicity Trust Base is a tuple of aggregate public key and a numeric parameter (q) specifying
the necessary quorum size. Signature on Unicity Seal is an aggregate signature, produced
by combining at least q partial signatures, and a bit-field identifying the signers. Partial
signatures are created by individual Root Chain validators using their private keys.

A standardization attempt of the closest appropriate signature scheme is available from
IETF — https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/.

Specifically, threshold signature schemes are avoided because of 1) accountability require-
ment 2) complicated and security-critical key setup, and 3) missing support of non-equal
voting powers.

8.5.6.7 Distributed, Dynamic Root Chain

The Unicity Trust Base Record is defined by Table 16.

Fields 1, 3 and 4 are copied from the referenced Governance Decision. Initially, the stakes
are fixed to 1. When appropriate (delegated) Proof of Stake governance processes are
implemented, the stake reflects the epoch’s locked stake amounts of a particular validator.

Unicity Trust Base is a chain of records defined by Table 16.
4See e.g., https://eprint.iacr.org/2018/483
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Table 16. Unicity Trust Base Record of Dynamic Distributed Root Chain.

No Field Notation Type
1. Epoch number e N64

2. Epoch starting round re N64

3. Validator identifiers and stakes {ν, bν}e {({0, 1}∗,N64)}
4. Quorum size (voting power) ke N16

5. Hash of state summary r H

6. Hash of related governance decision hgov H

7. Hash of previous record he−1 H

8. Signature of previous epoch validators se−1 version-dependent

Unicity Seal is a record signed by the validator set of the respective epoch as defined in
8.5.6.4, with an additional requirement of using the required multi-party signature scheme.

The verification functions are as defined in 8.5.6.4, where the signatures are interpreted in
broader sense as multi-party signatures, created by respective quorums of validators.

8.5.7 Alphabill as a Decentralized and Permission-less Blockchain

The sections so far document a blockchain system which must be bootstrapped and man-
aged by a trusted entity. This can be set up as a trusted Foundation, which employs a
team of system administrations, who change the configuration of the system based on
Foundation’s requests. For example, if a validator wants to join the Alphabill platform, the
Foundation must give it explicitly a permit, and this is executed as a change made by
system administrators. Analogously, in order to add a new partition, the change must be
approved and executed by trusted entities.

This section is about implementing Alphabill as a truly decentralized and permission-less
system. It relies on delegated proof of stake mechanism and on-chain governance.

The launch as a permission-less, PoS controlled, decentralized blockchain is a fragile af-
fair, due to initial instability (number of validators, locked stake, usage patterns). Therefore,
the system launches under the support and control of Alphabill Foundation, and a gradual
roadmap to full decentralization follows. While executing the roadmap, on-chain gover-
nance processes, briefly described in the following sections, are replacing the inintially
more manual (“permissioned”) processes.

8.5.7.1 Proof of Stake Mechanisms

Validator stakes are not fixed to 1, but correspond to the actual staked amount. The stake
amount is calculated by a governance process.

Votes in consensus algorithms have weights; and required quorum size is defined as
the sum of stakes of agreeing validators necessary to reach consensus (required voting
power).

The leader election algorithm may use stake amounts as an input (Section 8.5.7.2).
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8.5.7.2 On-chain Governance

On-chain Governance is executed by the Governance Partition. There are following, inde-
pendent processes. Subsections describe the interface between Alphabill Platform and the
Governance (regardless on-chain or by the Foundation): expectations on processes and
their output data structures.

Validator Assignment The process produces records (called Governance Decisions)
assigning validators to specific partitions and shards, as shown in Table 17.

Table 17. Governance Decision: Validator Assignment Record

No Field Notation Type
1. System Identifier α A

2. Shard Identifier σ {0, 1}≤SH .k

3. Epoch Number e N64

4. Epoch Switching Condition TBD TBD
5. Validator identifiers and stakes {ν, bν}e {({0, 1}∗,N64)}
6. Quorum Size (Voting power) ke N16

7. Hash of Previous Record he−1 H

The assignment of a particular validator is revoked by issuing a new decision, which does
not include the validator into the partition/shard any more.

The exact content of Epoch Switching Condition is left open: it can be a suggested or
enforced time or round number, or an arbitrary predicate; the implementation can work as
a black box. For example, a Switching Condition may be a Root Chain round number range
with soft enforcement – the responsible validators will not receive any fees for their work
outside the expected epoch.

Quorum Size is measured in total amount of stake behind validator votes to reach consen-
sus. For the Root Chain, k > 2/3

∑
bv. For partitions / shards, k > 1/2

∑
bv.

Partition Management This process creates, modifies and deletes partitions. The output
is System Description Records and consensus-layer configuration, illustrated by Table 18.

Table 18. Governance Decision: Partition Change Record

No Field Notation Type
1. System Identifier α A

2. System Description SD

3. Cluster Size *) k N32

4. Target Block Rate t N32(ms)
5. Time-out *) t2 / t3 N32(ms)
6. Hash of previous record he−1 H

The values marked by *) may be represented as a suggested range and/or a required
range, where the precise value is chosen by per-epoch management process, based on
operational requirements.
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Shard Management This process creates and updates Sharding Schemes for partitions.
The switch to a new sharding scheme is executed at epoch change; see Table 19.

Table 19. Governance Decision: Sharding Scheme Update

No Field Notation Type
1. System Identifier α A

2. Sharding Scheme SH SH

3. Switching Epoch Number e N64

4. Hash of previous record he−1 H

Incentive Payouts This process makes payments to Alphabill Validators. The payouts
are correlated with the quality and quantity of provided services, collected fees of the par-
ticular partition, the platform-wide impact (“common good” factor), and the amount of locked
stake. Payouts correlate negatively with unwanted behaviour: instability, not following the
ledger rules, not following the governance decisions, and more severely in the case of
equivocation or other acts with malicious intent.

The process should encourage stability and prefer on-chain data (data with cryptographic
proofs) for payout calculation. For example: only operational validators can become
block proposers (executed by the leader election algorithm; probability depends on stake
amounts), and every successful block proposal (as seen in block headers) earns a credit
unit for the proposer. A valid “fraud proof” (e.g., two conflicting signed messages from a
validator) resets the credit and may expulse the validator at the next epoch (executed by
Validator Assignment). Node reputation and “tokenomics” are discussed elsewhere.

Payouts are not immediate – they are delayed by few epochs.

Gas Rate Multiplier The process updates periodically the Gas Rate Multiplier value,
which provides relatively constant fees (as measured in external reference currencies).
This absorbs possible fluctuations of the ALPHA exchange rate; without the overhead of
maintaining a “stablecoin” for the fee payments.

Software and Version management This process manages software updates, and
thereby possible changes in the ledger rules. The output helps to coordinate possibly
compatibility-breaking changes, up to the precision of a Root Chain round number when
the switch happens.

On-chain Democrary In order to approve arbitrary changes expressable in human lan-
guage, a stake-weighted, in-person voting mechanism is implemented (elsewhere called
“coinvote”). The decisions become binding to the Foundation and/or members of the Al-
phabill ecosystem.
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9 Client Integration Patterns, Interfaces and
Tools

9.1 Background

9.1.1 Definitions

Wallet is a component which produces Transaction Orders. In order to do so, it must have
access to signing capability: the access to a private key or keys. Usually a “wallet”
knows the list of units it “owns” and can spend. There might be other functional-
ity packaged with a wallet—for example the capability to verify transactions. Wallet
may be the central component executing and orchestrating Composite Transactions,
involving possibly many shards and transaction systems.
If this definition feels controversial, then please mentally replace every occurrence of
“wallet” with “keychain”.

Full Node is a component which receives and validates new transactions of a parti-
tion/shard, either as new blocks or block proposals, and builds a state tree keeping
track of all units managed by the partition/shard.

State Tree is a data structure for maintaining the state of units managed by a parti-
tion/shard. State tree is authenticated by Unicity Certificates.

RPC Node is a middleware service which provides services to blockchain clients, like gen-
erating Ledger Proofs. RPC Node must maintain an up-to-date state tree for every
partition/shard it can generate these proofs for.

Ledger Proof is a compact proof certifying the state of a unit. It is extracted from State
Tree.

Block Proof is a compact proof certifying the execution of a transaction order. It is ex-
tracted from the block where this transaction is recorded.

Composite Transaction is a related series of simple transactions, where a proof certi-
fying the execution of previous transaction can be a pre-condition for executing the
following transaction. Alphabill supports serial composition of transactions.

9.1.2 Creating Transactions

Transaction Order is a data structure used to instruct Alphabill to execute a transaction with
a Unit; in some contexts it is also a message. Transaction Orders are recorded in ledger
blocks as proofs of transaction execution. Transaction Order is accomplished with “owner
proof”, a data field which “unlocks” specified unit. Unit “owner” is anybody who can produce
a valid owner proof. The most common example of ownership proof is a digital signature
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signing the transaction order. Necessary private key is handled by a software or hardware
component called “wallet”.

Transaction order messages are delivered from user to designated shard/partition nodes.
The message may traverse intermediaries like RPC Nodes; but because the messages are
signed and not further processed by middleware, these layers can be ignored (while not
considering availability and censorship issues). Actual delivery mechanism is application
specific and out of scope in this document.

Wallet can be managed by client device so that secret keys are under sole and full control
of the client. Alternatively, keys can be managed by a third party; we call this architecture
as custodial wallet (Fig. 25).

9.1.3 Verifying Transactions

The state of a unit is defined as the last certified state, as managed by designated shard/-
partition. After certifying a state the transaction is included into a block, which is immedi-
ately released. Thus, block proves the state at certification time.

Successfully executed transaction order changes the state of a unit. In usual transaction,
there are the sender and the recipient of transaction; considering effects the recipient is
“relying party”, a party which first verifies a transaction and then makes a decision based
on result, i.e., it relies on the correct validation of transaction execution. If the recipient
is the sole owner of the transaction, then he can be sure that no-one else can produce
valid transaction orders; and he can trust that he is still owner of the unit based on last
execution proof. Sender of the transaction is usually interested in timeliness of execution
and recipient’s verification, in order to e.g. receive something in exchange.

Following subsections list possible ways to verify execution of transactions.

9.1.3.1 Ledger Proof Based

Ledger Proof (denoted as Π) certifies unit’s state and last executed transaction order (P; s).
Ledger proof is verified by function call

VerifyLedgerProof(Π, (P; s),T ,SD) ;

where T is the root of trust, unicity trust base, and SD is system description defining the
partition.

Unit’s state D is valid if Π.y = H(ι, φ,D). Unit state can be verified only based on ledger
proof or up-to-date state tree. On special cases where units are “stateless”, i.e. its state
depends only on the last executed transaction, all other verification methods apply as well.

Ledger Proof is created by a node with up-to-date state tree of specific shard. See Fig. 20,
Fig. 21, Fig. 22 how this can be orchestrated as a service.

9.1.3.2 Block Proof Based

Block Proof (denoted as Ξ) certifies execution of transaction (P; s) during a partition/shard
round; certified by an Unicity Certificate generated at a Root Chain round. Block Proof can
be verified by the function call
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VerifyBlockProof(Ξ, (P; s),T ) .

Block Proofs are special because they can be generated efficiently from ledger content,
based on the last block with transaction involving a bill. It is not necessary to have access
to a full node with up-to-date state tree. See Fig. 24 how this function can be set up.

9.1.3.3 Unit Ledger Based

Unit Ledger is a list of unit records with all transactions executed on a unit. Based on Unit
Ledger, it is possible to validate all transaction orders and compute unit’s state as it evolves.

Unit Ledger based verification is special, because it validates all operations performed by
shard/partition validators, thus providing stronger security by not relying on honest majority
of validators.

9.1.3.4 Ledger Based

Given access to a ledger, the verification of a transaction can take many forms.

1. Find the latest block with transaction affecting a unit; if block is valid then transaction
can be considered as valid.

2. Replay and validate all transactions in blocks, build state tree, the last state and
executed transaction are validated results. This option has similar properties with
Unit Ledger based verification, but with extra overhead of verifying all units.

3. Replay and validate all transactions in blocks, build state tree, extract ledger proof,
validate ledger proof.

4. Find the latest block with transaction affecting a unit; extract block proof, validate
block proof.

9.1.3.5 Full Node Based

A full node validates transactions, either by participating in consensus and receiving block
proposals and UC-s, or by downloading all blocks. Unit state is defined as the state main-
tained by a correct full node.

9.1.4 Obtaining Proofs

9.1.4.1 From Partition/Shard Nodes

Ledger Proofs can be obtained from a partition/shard validator node, offering such service.
Ledger Proof generation is rather expensive for validators—ledger proofs can be generated
only during a short window in round cycle, while the UC closing a block is known and the
state tree is not yet dirty due to continuing application of new validated transactions.

9.1.4.2 From RPC Nodes

RPC node is dedicated for offering services to end users applications. Based on input of
new blocks from one (Fig. 22) or more partitions/shards (Fig. 21), a RPC Node maintains
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its state tree and serves queries about states of bills. In a sense, RPC node provides a
proxy service.

Like partition/shard nodes, the RPC nodes have only up-to-date state tree and can not
serve historical queries about previous states of units.

9.1.4.3 Locally from Ledgers

On this case, the ledgers are processed client-side (by so-called “full node client”) and
proofs are extracted locally (Fig. 23). Necessary tools are packaged as “full node SDK”.

9.2 Architecture

Client

Root Chain
Root Chain

Root Chain

Proofs

Figure 20. Client interactions with Alphabill; internal state tree is depicted as triangle.
Shard/partition nodes provide ledger proof service.

9.2.1 Wallet

Wallet is a component which produces Transaction Orders. In order to do so, it must have
access to signing capability: the access to a private key or keys. Usually a “wallet” knows
the list of units it “owns” and can spend. There might be other functionality packaged
with a wallet—for example the capability to verify transactions. Wallet may be the central
component executing and orchestrating Composite Transactions, involving possibly many
shards and transaction systems.

9.2.1.1 Thin Wallet

9.2.1.2 Custodial Wallet

9.2.2 RPC Node

RPC Node is a component which is offering services to Alphabill users. Its input is new
blocks delivered over the LedgerReplication protocol. Unlike a partition/shard node, an
RPC node does not participate in consensus.
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Client

Root Chain
Root Chain

Root Chain

RPC Node   

Blocks

Proofs

RPC Node   

Figure 21. Client interactions with Alphabill; internal state tree is depicted as triangle. RPC
nodes ingest blocks from shard/partition nodes and provide ledger proof service. There is
one RPC node per shard/partition.

9.3 Transacting

9.3.1 Flows

Sequence diagrams on Fig. 26, Fig. 27, Fig. 28, Fig. 29 depict typical transaction flows in
Alphabill.

Only Alphabill specific interaction sequences are depicted. It is assumed that the flows are
executed by real-world applications within specific contexts. For example, an application
connects recipients and senders, informs sender about expected transaction attributes,
and provides messaging within the frames of its use-case.

Sequence diagrams on Fig. 30 depict sequential composition of transactions, e.g. for com-
posed smart contract execution.

Please refer to Alphabill Atomicity Partition speification for the flow of multi-phase atomic
multi-unit transactions.

9.3.2 Algorithms

9.3.3 Protocols

9.3.3.1 Protocol LedgerProof

The protocol returns ledger proofs, which provide a compact cryptographic proof of execu-
tion of a transaction. Ledger proofs can be delivered to third parties, including the recipient
of a transaction, for independent verification, based on pre-agreed unicity trust base. The
protocol has two varieties:

1. Provides proof about current state of a unit;

February 28, 2024 121 / 143



preliminary release

Client

Root Chain
Root Chain

Root Chain

RPC Node   

Blocks

Proofs

Figure 22. Client interactions with Alphabill; internal state tree is depicted as triangle. RPC
node ingests blocks from shard/partition nodes and provide ledger proof service. One RPC
node has the state of many shards/partitions.

"Full" 
Client  

Root Chain
Root Chain

Root Chain

Blocks

Figure 23. Client interactions with Alphabill; internal state tree is depicted as triangle. “Full
node client” ingests blocks and reconstructs the state tree for all partitions/shards it cares
about.

2. Provides the proof of execution of a specific transaction, identified in request by its
hash. The request can block briefly, until transaction execution and availability of the
proof, or until time-out.

In a sense, the second variety notifies about the execution of a transaction. This enables
optimization for sequential execution of (composed) operations for least possible latency.
The service does not provide information about past states of units and about content of
transaction orders.

Query: ⟨LedgerProof | α, ι⟩
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Archive   
Client  

Root Chain
Root Chain

Root Chain

Blocks

Figure 24. Client interactions with Alphabill; a blockchain copy is depicted as isometric
cube. One archiving client replicates the copies of all shard/partition ledgers it cares about.

Client 
Front-end

Root Chain
Root Chain

Root Chain

Client 
Back-end

Blocks

Tr
us

t d
om

ai
n

Figure 25. Client interactions with Alphabill; internal state tree is depicted as a triangle.
Client application is decomposed into layers; only back-end interacts with Alphabill using
designated SDK-s; and front-end fully trusts the back-end.

Reply: (Π,D, φ, nα)

where Π certifies the “current state” of unit ι at partition/shard round nα. The query for
specific transaction includes transaction hash λ = Hd(P′; s′):

Query: ⟨LedgerProof | α, ι, λ⟩,

Reply: (Π,D, φ, nα)

The query may block for up to T max
0 + t2 time units (preconfigured).
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Sender Recipient AB shard

(P; s)

((P; s), . . . )
LedgerProof | P.ι

Π

VerifyLedgerProof(Π, (P; s),T ,SD)

Sender Recipient RPC node AB shard

(P; s)

n
Bn

((P; s), . . . )
LedgerProof | P.ι

Π

VerifyLedgerProof(Π, (P; s),T ,SD)

Figure 26. Sender notifies the recipient; recipient obtains ledger proof. LedgerProof service
may be provided by AB shard node (1st diagram) or an RPC Node (2nd diagram).

There are following defined outcomes:

• Success: returned when the ledger proof about successfully executed transaction
becomes (or is) available. λ = Hd(P; s) and VerifyLedgerProof(Π, (P; s),T , SD) = 1

• Unknown transaction. Wait until max. transaction order execution timeout T max
0 , then

Reply is returned with last partition/shard block number and error code.

• Not executed transaction (e.g. invalid). Error code is returned. Returned only when
validation happens while the query is blocked. Otherwise, a general error is returned
(unknown transaction).

• Transaction is already executed, but there is another following transaction executed
with the unit changing its state again, thus it is not possible to produce the ledger
proof. Return an error and partition/shard block number nα when the interesting
transaction was executed. This information is available at least until T max

0 + t2 have
passed, afterwards a generic error (unknown transaction) is returned.
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Sender Recipient AB shard

(P; s)

LedgerProof | P.ι

Π

((P; s),Π)
VerifyLedgerProof(Π, (P; s),T ,SD)

Figure 27. Sender notifies the recipient and provides ledger proof. As on previous figure,
the LedgerProof service may be provided by an RPC Node (not depicted here).

Sender Recipient RPC Node AB shard

(P; s)
{B}

((P; s),Π)

Verification

Notification srvNotification srv

Figure 28. Transaction with middleware providing notification service

In order to identify executed payment orders, a node maintains a table of executed trans-
action order hashes and partition/shard block numbers identifying the block recording the
transaction.

It is expected that client may fail over to another partition/shard node on error. Note, that in
the byzantine setting, the no-execution results are just “opinions” of respective nodes.

9.3.3.2 Protocol BlockProof

BlockProof protocol returns either the known last transaction with a unit, or the block proof
of specified transaction order execution.
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Sender Recipient RPC Node AB shards

(P; s)
{B}

CheckTxs | pkr

{(P; s),Π}

Verification

Figure 29. Transaction with middleware where the recipient checks for recent incoming
transactions, or for listing of all his bills (known to RPC node which in turn may sync with
one or more partitions)

Sender AB shard 1 AB shard 2

(P1; s1)

P1.ι

Π1

(P2;Π1, s2)

P2.ι

Π2

VerifyLedgerProof(Π2, (P2; s2),T ,SD)

Figure 30. Sequential composition of transactions. Optional middleware is not depicted.

Query: ⟨BlockProof | α, ι)⟩,

Reply: (Ξ, (P; s), α, σ, n, h−)

Query: ⟨BlockProof | α, ι, λ)⟩,

Reply: (Ξ, (P; s), α, σ, n, h−)

If transaction is not found then the block number range where the search was performed is
returned. Note that this is not a non-existence proof.

The block number n can be verified by checking that VerifyBlockProof(Ξ, P,T = 1) and
Ξ.hh = H(α, σ, n, h−).
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9.3.3.3 Protocol CheckTxs

This protocol has two varieties: a) return information about recent transactions, where
recent is defined as everything executed after a round/block number specified in the query;
and b) return all units owned by a party; where ownership is defined as a specific predicate
content. A party might have multiple wallets, a wallet may contain multiple keys, and there
are many ways how to encode an ownership predicate. The search works using literal
comparison of predicate content—thus it is up to interested party to reach out-of-band
agreement on a fixed set of keys and predicate encoding.

It is not feasible to evaluate predicates during a search.

The variety where all units in specific shard/partition locked by a predicate are returned can
be achieved by setting the earliest block number to 0.

Query: ⟨CheckTxs | α, {σ}, φ⟩,

Reply: ({σ, n}, {(P; s), nP,Π})

The query includes the following parameters:

• α – system identifier,

• σ – optional list of shard identifiers to limit the search to specific shards;

• φ – literal predicate as a byte array.

Response:

• {σ, n} – limit the scope of response to a set of shards, where for each specified shard
the latest known block number is n,

• a set of

– (P; s) – signed transaction order,

– nP – the block number recording the transaction,

– Π – ledger proof certifying the transaction and unit state at specified block num-
ber.

9.3.3.4 Protocol StateReplication

This protocol returns a recent state file, a snapshot of shard/partition state. A state file is
used to quickly recover from scratch or instantiate a shard/partition node, an RPC node
with state tree, or a full node client.

Applying a state file is equivalent to sequentially applying blocks from the same ledger, until
the block number provided in the state file.

A state file has the same data type as genesis block : B0 = ⟨α, σ,SH , ιL, ιR, n, ιr,N,T ,SD⟩

Query: ⟨StateReplication | α, σ, n′⟩,

Reply: (Bn
0)

Here, client specifies the transaction system identifier and optional shard identifier and
block number which defines the earliest snapshot block number the client is interested, i.e.
Bn

0.n >= n′.
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9.4 Libraries

9.4.1 Wallet

9.4.2 Thin Client

9.4.3 Full Node Client

9.4.4 Alphabill Platform SDK

This toolkit allows building new partitions, bridges and oracles.

9.5 Guarantees

9.5.1 Reliability of Transactions

9.5.2 Atomic Composite Transactions

9.5.3 Serial Composition of Transactions
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A Bitstrings, Orderings, and Codes

A.1 Bitstrings and Orderings

By the topological ordering ≺ of {0, 1}∗ we mean the irreflexive total ordering defined as
follows: c∥0∥x ≺ c ≺ c∥1∥y for all c, x, y in {0, 1}∗.

For example, the subset {0, 1}≤2 is ordered as follows: {00 ≺ 0 ≺ 01 ≺ ⌊⌋ ≺ 10 ≺ 1 ≺ 11}.

A.2 Prefix-Free Codes

A code is a finite subset C of {0, 1}∗. A code C is prefix-free, if no codeword c ∈ C is an
initial segment of another codeword c′ ∈ C, i.e. if c ∈ C, then c∥c′′ < C for every bitstring
c′′ ∈ {0, 1}∗.

For every code C, the closure of C is the code C = {c ∈ {0, 1}∗ : ∃c′′ : c∥c′′ ∈ C}, i.e. C

consists of all possible prefixes (including ⌊⌋) of the codewords of C.

A prefix-free code C is irreducible, if its closure C satisfies the following property. For every
c ∈ C, either c ∈ C or both c∥0, c∥1 ∈ C.

Figure 31. Irreducible prefix free code C and its closure C.
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B Encodings

B.1 Primitive Types

All integers are unsigned and represented with the bits ordered from the most significant
to the least significant (also known as big endian or network byte order).

Time is expressed as the number of seconds since 1970-01-01 00:00:00 UTC, encoded
as an unsigned integer. The count is zero-based: the time value for 1970-01-01 00:00:00
UTC is 0, the value for 1970-01-01 00:00:01 UTC is 1, etc. All days are considered to
be exactly 86,400 seconds long. Leap seconds are handled by extending the duration of
round immediately preceding the leap second.

When higher precision is needed, time is expressed as number of microseconds since
1970-01-01 00:00:00 UTC, encoded as an unsigned integer. During a leap second, the
part corresponding to full seconds (up from the seventh digit in decimal notation) is kept
the same as during the previous second, but the part corresponding to fractions of a second
(the six lowest digits in decimal notation) is reset to zero and counted up from there again.
In other words, the value recorded for a time within a leap second is the same as the value
recorded for the time exactly one second earlier.

All text strings are represented in the UTF-8 encoding of the UNICODE character set.

B.2 Identifiers

Identifiers of Nodes (validators) are expressed as hashes of compressed ECDSA public
keys; respective private key is controlled by the Node.

Identifiers of Transaction Systems are expressed as integers.

B.3 Cryptographic Algorithms

“ECDSA” denotes the Elliptic Curve Digital Signature Algorithm using P-256 (secp256k1)
curve, specified by NIST FIPS 186-4.

“SHA-256” denotes the SHA-2 hash algorithm with 256-bit output and “SHA-512” denotes
the SHA-2 hash algorithm with 512-bit output; both are specified by NIST FIPS 180-4.

The list is non-exhaustive.
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C Hash Trees

C.1 Plain Hash Trees

C.1.1 Function PLAIN_TREE_ROOT

Computes the root value of the plain hash tree with the given n values in its leaves.

Input: L = ⟨x1, . . . , xn⟩ ∈ H
n, the list of the values in the n leaves of the tree

Output: r ∈ H ∪ {⊥}, the value in the root of the tree

Computation:
function plain_tree_root(L)

if n = 0 then ▷ L = ⟨⟩
return ⊥

else if n = 1 then ▷ L = ⟨x1⟩

return x1

else
m← 2⌊log2(n−1)⌋

Lleft ← ⟨x1, . . . , xm⟩

Lright ← ⟨xm+1, . . . , xn⟩

return H(plain_tree_root(Lleft), plain_tree_root(Lright))
end if

end function

Note that 2⌊log2(n−1)⌋ is the value of the highest 1-bit in the binary representation of n − 1,
which may be the preferred way to compute m in some environments. Splitting the leaves
this way results in a structure that allows the root of the tree to be computed incrementally,
without having all the leaves in memory at once.

C.1.2 Function PLAIN_TREE_CHAIN

Computes the hash chain from the i-th leaf to the root of the plain hash tree with the given
n values in its leaves.

Input:

1. L = ⟨x1, . . . , xn⟩ ∈ H
n, the list of the values in the n leaves of the tree

2. i ∈ {1, . . . , n}, the index of the starting leaf ot the chain

Output: C = ⟨(b1, y1), . . . , (bℓ, yℓ)⟩ ∈ ({0, 1}×H)ℓ, where yi are the sibling hash values on the
path from the i-th leaf to the root and bi indicate whether the corresponding yi is the right-
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or left-hand sibling

Computation:
function plain_tree_chain(L; i)

assert 1 ≤ i ≤ n
if n = 1 then ▷ L = ⟨x1⟩

return ⟨⟩
else

m← 2⌊log2(n−1)⌋ ▷ Must match plain_tree_root
Lleft ← ⟨x1, . . . , xm⟩

Lright ← ⟨xm+1, . . . , xn⟩

if i ≤ m then
return plain_tree_chain(Lleft; i)∥(0, plain_tree_root(Lright))

else
return plain_tree_chain(Lright; i − m)∥(1, plain_tree_root(Lleft))

end if
end if

end function

C.1.3 Function PLAIN_TREE_OUTPUT

Computes the output hash of the chain C on the input x.

Input:

1. C = ⟨(b1, y1), . . . , (bℓ, yℓ)⟩ ∈ ({0, 1} × H)ℓ, where yi are the sibling hash values on the
path from the i-th leaf to the root and bi indicate whether the corresponding yi is the
right- or left-hand sibling

2. x ∈ H, the input hash value

Output: r ∈ H, output value of the hash chain

Computation:
function plain_tree_output(C; x)

if ℓ = 0 then ▷ C = ⟨⟩
return x

else
assert bℓ ∈ {0, 1}
if bℓ = 0 then

return H(plain_tree_output(⟨(b1, y1), . . . , (bℓ−1, yℓ−1)⟩; x), yℓ)
else

return H(yℓ, plain_tree_output(⟨(b1, y1), . . . , (bℓ−1, yℓ−1)⟩; x))
end if

end if
end function

C.1.4 Inclusion Proofs

Plain hash trees can be used to provide and verify inclusion proofs. The process for this is
as follows:
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• To commit to the contents of a list L = ⟨x1, . . . , xn⟩:
– Compute r ← plain_tree_root(L).
– Authenticate r somehow (sign it, post it to an immutable ledger, etc).

• To generate inclusion proof for xi ∈ L:
– Compute C ← plain_tree_chain(L; i).

• To verify the inclusion proof C = ⟨(b1, y1), . . . , (bℓ, yℓ)⟩ for x:
– Check that plain_tree_output(C; x) = r, where r is the previously authenticated

root hash value.

C.2 Indexed Hash Trees

C.2.1 Function INDEX_TREE_ROOT

Computes the root value of the indexed hash tree with the given n key-value pairs in its
leaves.

Figure 32. Keys of the nodes of an indexed hash tree.

Input: List L = ⟨(k1, x1), . . . , (kn, xn)⟩ ∈ (K×H)n, the list of the key-value pairs in the n leaves
of the tree; K must be a linearly ordered type and the input pairs must be strictly sorted in
this order, i.e. k1 < . . . < kn

Output: r ∈ H ∪ {⊥}, the value in the root of the tree

Computation:
function index_tree_root(L)

assert k1 < . . . < kn

if n = 0 then ▷ L = ⟨⟩
return ⊥

else if n = 1 then ▷ L = ⟨(k1, x1)⟩
return H(1, k1, x1)

else
m← ⌈n/2⌉ ▷ Most balanced tree
Lleft ← ⟨(k1, x1), . . . , (km, xm)⟩
Lright ← ⟨(km+1, xm+1), . . . , (kn, xn)⟩
return H(0, km, index_tree_root(Lleft), index_tree_root(Lright))

end if
end function

February 28, 2024 133 / 143



preliminary release

C.2.2 Function INDEX_TREE_CHAIN

Considers the indexed hash tree with the given n key-value pairs in its leaves. If there is
a leaf containing the key k, computes the hash chain from that leaf to the root. If there is
no such leaf, computes the hash chain from the leaf where k should be according to the
ordering, which can be used as a proof of k’s absence.

Input:

1. L = ⟨(k1, x1), . . . , (kn, xn)⟩ ∈ (K × H)n, the list of the key-value pairs in the n leaves of
the tree; K must be a linearly ordered type and the input pairs must be strictly sorted
in this order, i.e. k1 < . . . < kn

2. k ∈ K, the key to compute the path for

Output: C = ⟨(k1, y1), . . . , (kℓ, yℓ)⟩ ∈ (K×H)ℓ, where ki are the keys in the nodes on the path
from the leaf to the root and yi are the sibling hash values

Computation:
function index_tree_chain(L; k)

assert k1 < . . . < kn

if n ∈ {0, 1} then ▷ L = ⟨⟩ or L = ⟨(k1, x1)⟩
return L

else
m← ⌈n/2⌉ ▷ Must match index_tree_root
Lleft ← ⟨(k1, x1), . . . , (km, xm)⟩
Lright ← ⟨(km+1, xm+1), . . . , (kn, xn)⟩
if k ≤ km then

return index_tree_chain(Lleft; k)∥(km, index_tree_root(Lright))
else

return index_tree_chain(Lright; k)∥(km, index_tree_root(Lleft))
end if

end if
end function

C.2.3 Function INDEX_TREE_OUTPUT

Computes the output hash of the chain C on the input key k.

Input:

1. C = ⟨(k1, y1), . . . , (kℓ, yℓ)⟩ ∈ (K × H)ℓ, where ki are the keys in the nodes on the path
from the leaf to the root and yi are the sibling hash values

2. k ∈ K, the input key

Output: r ∈ H ∪ {⊥}, the value in the root of the tree

Computation:
function index_tree_output(C; k)

if ℓ = 0 then ▷ C = ⟨⟩
return ⊥

else if ℓ = 1 then ▷ C = ⟨(k1, y1)⟩
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return H(1, k1, y1)
else

if k ≤ kℓ then
return H(0, kℓ, index_tree_output(⟨(k1, y1), . . . , (kℓ−1, yℓ−1)⟩; k), yℓ)

else
return H(0, kℓ, yℓ, index_tree_output(⟨(k1, y1), . . . , (kℓ−1, yℓ−1)⟩; k))

end if
end if

end function

C.2.4 Inclusion and Exclusion Proofs

Indexed hash trees can be used to provide and verify both inclusion and exclusion proofs.
The process for this is as follows:

• To commit to the contents of a list L = ⟨(k1, x1), . . . , (kn, xn)⟩ (where k1 < . . . < kn):

– Compute r ← index_tree_root(L).

– Authenticate r somehow (sign it, post it to an immutable ledger, etc).

• To generate inclusion proof for (ki, xi) ∈ L:

– Compute C ← index_tree_chain(L; ki).

• To verify the inclusion proof C = ⟨(k1, y1), . . . , (kℓ, yℓ)⟩ for (k, x):

– Check that index_tree_output(C; k) = r, where r is the previously authenticated
root hash value.

– Check that (k, x) = (k1, y1), where (k1, y1) is the first pair in the list C.

• To generate exclusion proof for k < {k1, . . . , kn}:

– Compute C ← index_tree_chain(L; k).

• To verify the exclusion proof C = ⟨(k1, y1), . . . , (kℓ, yℓ)⟩ for k:

– Check that index_tree_output(C; k) = r, where r is the previously authenticated
root hash value.

– Check that k , k1, where (k1, y1) is the first pair in the list C.
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D State File

State file consists of the following components:

• Header

• List of Node Records

• Checksum

D.1 Header

State file header consists of the following components:

• α – system identifier of type A

• SH – sharding scheme of type SH

• σ – shard identifier of type {0, 1}SH .k

• ιL – left separator of type I ∪ {⊥ }

• ιR – right separator of type I ∪ {⊥ }

• T – unicity trust base of type B

• SD – system descriptors of type SD[A] for all registered partitions (including SD[α])

• UC – unicity certificate for the round from which the state tree was exported

• m – the number of Node Records of type N64

D.2 Node Record

Node Record consists of the following components:

• ι – unit identifier, of type I

• φ – bearer condition, of type L

• D – unit data, of type SD[α].D

• x – state hash, of type H

• ⟨(b1, y1), . . . , (bm, ym)⟩ – the hash chain linking φ, D and x to the root of the unit tree,
where bi are of type {0, 1} and yi of type H

• hasLeft – existence of left child, of type {0, 1} (1-exists, 0-does not exist)

• hasRight – existence of right child, of type {0, 1} (1-exists, 0-does not exist)
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Note that φ, D and x are the final values at the end of the round and ⟨(b1, y1), . . . , (bm, ym)⟩
links them to the root hash of the unit tree as of at the end of the round. The earlier states
of the unit would be pruned as the first step of the next round, so these are omitted from
the state file. The hash chain is extracted as specified for CreateUnitTreeCert(ι, |N[ι].S | ,N)
in Sec. 4.10.2.

D.3 Checksum

Checksum of type N32 is the CRC32 of all contents (except the Checksum itself)

D.4 Writing (Serialization) Algorithm

For the serialization, given as input the state S , the following calls are made:

1. writeheader – writes out the file header based on the state S

2. traverse(S .ιr) – traverses the state tree, starting from the root, and writes out the
node records

3. addchecksum – computes and writes out the ckecksum

The function traverse(ι) is defined as follows:
if ι , 0I then
traverse(N[ι].ιL)
traverse(N[ι].ιR)
writenode(N[ι])

end if

where writenode(N[ι]) writes down a Node Record R with R.hasLeft = (N[ι].ιL , 0I),
R.hasRight = (N[ι].ιR , 0I), R.x = N[ι].S |N[ι].S |.x, and ⟨(b1, y1), . . . , (bm, ym)⟩ as specified in
Sec. 4.10.

D.5 Reading (Deserialization) Algorithm

The function S ← readstate(File) is defined as follows (using N instead of S .N):
H ← readHeader(File)
S ← NewState(H)
while R← readItem(File) do

ι← R.ι
N[ι]← NewNode(R)
if R.hasRight then

(N[ι].ιR, hR)← pop()
else

(N[ι].ιR, hR)← (0I, 0H)
end if
if R.hasLeft then

(N[ι].ιL, hL)← pop()
else

(N[ι].ιL, hL)← (0I, 0H)
end if
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N[ι].d ← 1 +max{N[N[ι].ιL].d,N[N[ι].ιR].d}
N[ι].b← N[N[ι].ιR].d − N[N[ι].ιL].d
N[ι].V ← (S .SD[α].FS )((S .SD[α].VS )(N[ι].D),N[N[ι].ιL].V,N[N[ι].ιR].V)

▷ Compute pre-pruning value of the sub-tree summary hash
hs ← plain_tree_output(⟨(b1, y1), . . . , (bm, ym)⟩,H(R.x,H(φ,D)))
h← H(ι, hs,N[ι].V; hL,N[N[ι].ιL].V; hR,N[N[ι].ιR].V)
push((ι, h))

▷ Compute post-pruning value of the sub-tree summary hash
N[ι].S ← ⟨(⊥,R.x,N[ι].φ,N[ι].D)⟩
N[ι].hs ← plain_tree_root(⟨H(R.x,H(N[ι].φ,N[ι].D))⟩)
N[ι].h← H(ι,N[ι].hs,N[ι].V; N[N[ι].ιL].h,N[N[ι].ιL].V; N[N[ι].ιR].h,N[N[ι].ιR].V)

end while
(S .ιr, hr)← pop()
assert VerifyUnicityCert(H.UC) ∧ hr = H.UC.IR.h ∧ N[S .ιr].V = H.UC.IR.v
return S

Here, the functions used by readstate are as follows:

• H ← readHeader(File) – reads the header from the state file.

• S ← NewState(H) – stores the corresponding values from H as components of the
state S .

• R ← readItem(File) – reads a node record R from the state file. It also indicates
whether there are any more node records in the file. The while-loop can be replaced
with a for-loop based on the m parameter of the header.

• N[ι] ← newNode(R) – creates a new node N[ι] and sets its data fields according to
the existing fields of the node record R.

• push, pop – standard stack operations, assuming that the stack is empty in the be-
ginning. In this specification, stack elements are of type I. In program code, stack
elements can be pointers to nodes.
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E Atomicity Partition Type (v1)

E.1 Motivation and General Description

E.1.1 Motivation

Let u1, . . . , um be units with identifiers ι1, . . . , ιm and owner conditions φ1, . . . , φm, respec-
tively.

The units u1, . . . , um may belong to different transaction systems (partitions) with identifiers
α1, . . . , αm, respectively. It is assumed that in all these partitions there are transaction types
for changing the ownership conditions of units.

Goal: transfer the units atomically to new owner conditions φ′1, . . . , φ
′
m so that either:

• all transfers happen – all units u1, . . . , um are transferred to the new owner conditions
φ′1, . . . , φ

′
m, or

• none of the transfers happen – all units will have owner conditions equivalent to the
previous conditions φ1, . . . , φm

All units may potentially be controlled by different parties. We assume that these parties
may communicate in order to agree on the atomic transfer, i.e. after communication, all
parties know ι1, . . . , ιm, φ1, . . . , φm, α1, . . . , αm. The parties also agree on other transaction
specific parameters.

If there is more than one party, this is an atomic swap. If there is a single party, this is an
atomic multi-unit transfer.

E.1.2 General Description of the Atomicity Partition

There is a specific transaction system (partition) with identifier α0 that provides necessary
unique references for atomic multi-unit transactions. We call this atomicity partition.

Units of the atomicity partition are the atomic multi-unit transactions, i.e. every such trans-
action has a unique pseudo-random identifier ι (referred to as contract identifier) in the
atomicity partition.

There is no ownership or value for the units of the atomicity partition, so it is reasonable to
assume that the value of every unit is v = 0, and the ownership condition of every unit is
φ ≡ 1, i.e. identically true.

Transactions of the atomicity partition are:

1. reg – registering new atomic multi-unit transaction with contract identifier ι
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2. con – confirming an existing multi-unit transaction with contract identifier ι

E.2 Phases of Atomic Multi-Unit Transactions

E.2.1 Phase 1: Preparation

Parties prepare transaction orders P1, . . . , Pm that transfer the owner-
ships of the units ι1, . . . , ιm to a special parametrized owner predicates
φato(α0, ι, t0, φ1, φ

′
1; ·; ·, ·), . . . , φato(α0, ι, t0, φm, φ

′
m; ·; ·, ·)

The contract identifier ι is computed as a deterministic pseudo-random function on a 128-
bit random nonce r, the payment orders P1, . . . , Pm without signatures (owner proofs) and
the owner predicates φato(α0, 0256, t0, φi, φ

′
i ; ·; ·, ·), where in the place of ι (which does not yet

exist) there is 0256.

The predicate φato(α0, ι, t0, φ, φ
′; ·; ·, ·) is defined as follows:

φato(α0, ι, t0, φ, φ
′; P;Π, s), where the pair (Π, s) represents the owner proof, is true if either:

1. φ′(P, s) = 1, and Π is a proof that status = 1 in the partition α0 in a round with number
t < t0 of the status of contract ι, or

2. φ(P, s) = 1, and Π is a proof that status = 0 in the partition α0 in a round with number
t ≥ t0 of the status of contract ι, or

3. φ(P, s) = 1, and Π is a proof in the partition α0 in a round with number t ≥ t0 of the
non-existence of contract ι

E.2.2 Phase 2: Registration

One of the parties creates the reg message ⟨α0, reg, ι, A,T0⟩ with:

1. α0 – the identifier of the atomicity partition

2. reg – message type

3. ι – contract identifier

4. A – attribute field that contains the identifiers α1, . . . , αm, ι1, . . . , ιm, the random nonce
r, and the timeout t0 of the multi-unit transaction

5. T0 – timeout of the reg message

The party sends the reg message to the atomicity partition.

The new unit with identifier ι is created in the atomicity partition with the data part D con-
taining α1, . . . , αm, ι1, . . . , ιm, r, t0, status = 0, confirmed = ∅.

E.2.3 Phase 3: Confirmation

Parties sign their transaction orders P1, . . . , Pm (by adding ownership proofs si to Pi) and
send them to the corresponding partitions α1, . . . , αm.

Parties obtain the unit proofs Π1, . . . ,Πm for the signed transactions (P1, s1), . . . , (Pm, sm).

Every party i sends the confirmation message ⟨α0, con, ι, Ai,T0⟩ to the atomicity partition
with Ai = (Pi, si,Πi).
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Having received a con message ⟨α0, con, ι, (Pi, si,Πi),T0⟩ , the atomicity partition ver-
ifies (Pi, si,Πi), checks if the identifiers αi, ιi are consistent with the data part D =

(α1, . . . , αm, ι1, . . . , ιm, status, confirmed) of the contract ι. After a successful verification,
the triple (Pi, si,Πi) is added to the set confirmed.

If all transactions have been confirmed, i.e. if confirmed = {(P1, s1,Π1), . . . , (Pm, sm,Πm)},
then the atomicity partition checks if the contract identifier ι was correctly computed based
on P1, . . . , Pm, and sets status← 1.

E.3 Specification of the Atomicity Partition

E.3.1 Parameters, Types, Constants, Functions

System identifier: α0

Summary value type V: {0, 1}

Summary trust base: V = 0

Summary check: γ ≡ 1

Units u ∈ U: multi-unit atomic transactions

Data type D: tuples (α1, . . . , αm, ι1, . . . , ιm, t0, status, confirmed) where:

1. α1, . . . , αm – system identifiers of type A

2. ι1, . . . , ιm – unit identifiers of type I

3. r – random nonce of type N128

4. t0 – atomicity timeout of type N64

5. status – status of type N1

6. confirmed – set of transaction orders with proofs, initially empty

Summary functions:

1. Vs(D) = D.status

2. FS (v, vL, vR) = 0

3. FS (⊥, vL, vR) = 0

Summary value of zero-unit: N[0I].V = 0

Transaction types: T = {reg, con}

E.3.2 Transactions

E.3.2.1 Register

Transaction P = ⟨α0, reg, ι, A,T0⟩, with A = (α1, . . . , αm, ι1, . . . , ιm, r, t0), where:

1. α1, . . . , αm – a set of system identifiers of type A

2. ι1, . . . , ιm – a set of unit identifiers, where ιi is of type Iαi defined by SD

3. r – random nonce of type N128
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4. t0 – atomicity timeout of type N64

Transaction-specific validity condition: there is no N[ι] and the current round number
S .n does not exceed t0:

ψreg((P, s), S ) ≡ N[ι] = ⊥ ∧ S .n ≤ t0

Actions Actionreg:

1. if N[ι] = ⊥ then: AddItem(ι, 1, (α1, . . . , αm, ι1, . . . , ιm, r, t0, 0, ∅))

Table 20. Data fields of the reg transaction order.

No Field Notation Type Predefined
value

1. system identifier α A α0

2. transaction type τ N8 reg
3. unit identifier ι I -
4. system identifiers A.α1, . . . , αm A -
5. unit identifiers A.ι1, . . . , ιm I -
6. random nonce A.r N128 -
7. atomicity timeout A.t0 N64 -
8. message timeout T0 N64 -
9. owner proof s {0, 1}∗ ⌊⌋

E.3.2.2 Confirm

Transaction P = ⟨α0, con, ι, A,T0⟩, with A = (Pi, si,Πi), where:

1. Pi – transaction order

2. si – owner proof

3. Πi – unit proof

Transaction-specific validity condition: the confirmation message is not expired, there
exist N[ι], the unit identifier in Pi belongs to the set {ι1, . . . , ιm}, owner proof and the unit
proof verify:

ψcon((P, s), S ) ≡ S .n ≤ N[ι].D.t0∧N[ι] , ⊥∧Pi.ι ∈ N[ι].{ι1, . . . , ιm}∧VerifyUnitProof(Πi, (Pi, si),T ,SD)

Actions Actioncon:

1. N[ι].D.confirmed← N[ι].D.confirmed ∪ Ai

2. if |N[ι].D.confirmed| = m then: N[ι].D.status← 1
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Table 21. Data fields of the con transaction order.

No Field Notation Type Predefined
value

1. system identifier α A α0

2. transaction type τ N8 con
3. unit identifier ι I -
4. transaction order A.Pi variable -
5. owner proof A.si {0, 1}∗ -
6. unit proof A.Πi SP -
7. message timeout T0 N64 -
8. owner proof s {0, 1}∗ -
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