

Alphabill
Public Token Infrastructure

 2

TL;DR: Do I really need another blockchain?

Alphabill is brought to you by the team behind Guardtime, a team of researchers developing
blockchain protocols since before Bitcoin. It is a new public, permissionless blockchain design
that elevates tokens to first class citizen status. Tokens are not trapped in smart contracts1
but free to move across Web2 and Web3 as programmable, autonomous data objects that
can be assigned digital property rights.

• Alphabill is designed to have sufficient throughput to tokenize all human and machine
generated content on the Internet, with throughput several orders of magnitude
higher than existing blockchain designs. This is achieved by using bills as transaction
units (similar to physical cash). Alphabill is the first blockchain to be built using bills i.e.
not UTXOs, not accounts.

• Single token programmability is implemented in WebAssembly using “predicates”,
similar to Bitcoin locking scripts but with rich statefulness and robust programmability.
An object-oriented programming model is used with inheritance potentially many levels
deep, enabling a rich ontology of token types.

• Multi-token programmability (such as Automated Market Makers(AMMs)) can be
implemented using a native EVM, but any smart contract platform can potentially be
used.

• The blockchain can be decomposed into blockchains for individual tokens which can be
verified with zero trust. This is similar to physical cash – you care about the money in
your wallet, not that of anyone else.

• Apart from short term spikes fees are low, deterministic, and independent of
throughput i.e. no congestion.

• Alphabill is a Delegated Proof of Stake Network. Massive decentralization is achieved by
stateless validation. Anyone with consumer accessible hardware can participate in
validating blocks and immediately earn rewards without needing to sync the chain.

• Alphabill enables offline transactions for ALPHA, its native currency as well as other
crypto assets through cross chain interoperability. In an environment with no network
connectivity a payer can irrevocably make a transfer that can be verified with zero trust
assumptions

• The major tradeoff is that there is no shared global state – flash loans, for example
would be impossible on Alphabill.

1 Tokens are not stored as variables inside smart contracts but instead are allocated space directly on
the state tree enabling them to be extracted and verified off-chain.

Output

Alphabill Distributed Machine

…

Input

Machine

Machine

Machine

Machine

Ethereum

Token

Web2 Database

Solana

Alphabill

 3

1 Introduction: A Platform for Digital Property Rights ... 5

2 Design Goals ... 7
2.1 Linear Scale Production ... 7
2.2 Linear Scale Verification ... 8
2.3 Fast Deterministic Settlement Finality .. 9
2.4 Censorship and Attack Resistance .. 9
2.5 Deterministic Fees and Zero Extractable Value ... 9

3 Theory of Blockchain Decomposition ... 10

4 Transaction Units .. 11

5 Alphabill State Tree ... 13
5.1 Recursion: State Evolution Over Time ... 15
5.2 Certificates ... 19
5.3 State Tree Splits ... 19
5.4 Double Spending .. 21

6 Distributed Machine Architecture .. 22
6.1 Root Chain ... 23
6.2 Partitions .. 23
6.3 Shards .. 24
6.4 Stateful and Stateless Validators ... 26

7 Alphabill Computational Model ... 27
7.1 Predicates for single unit programmability ... 28
7.2 Smart contracts for multi-unit programmability ... 28
7.3 Security Advantages of Separating Execution from Settlement 30

8 Alphabill Consensus Protocol ... 31
8.1 Steps in the Consensus Protocol ... 33
8.2 Delegated Proof of Stake execution ... 34
8.3 A comparison with federated blockchains. ... 35
8.4 A comparison with layer two scaling solutions ... 35

9 The Alphabill Trust and Security Model .. 36
9.1 Breaking down security into its components .. 37

10 Decentralization and the Blockchain Trilemma ... 38

 4

11 Partitions and Alphabill Transaction Framework .. 40
11.1 Censorship Resistance and Fair Ordering ... 40
11.2 Private Transactions ... 41
11.3 ZK Validity Guarantee .. 41
11.4 KYC and AML ... 41

12 ALPHA Native Currency Partition .. 41

13 User Token Partition: Object Oriented Design ... 42
13.1 Fungible and Non-Fungible Tokens (NFTs) ... 42
13.2 Predicates .. 42
13.3 Owner predicate: .. 43
13.4 Token Types ... 44
13.5 Mint Predicate: Enforcing Restrictions on Minting .. 45
13.6 Inherited Owner Predicate: Enforcing Restrictions on Transfers 45
13.7 Inherited Subtype Predicate: Enforcing Restrictions through Inheritance 46
13.8 Data Update Predicate: Implementing State Machines .. 47

14 Atomicity Partition: Decentralized Exchange ... 49

15 Governance Partition .. 49
15.1 On-chain Voting .. 50

16 Alphabill EVM Partition ... 51
16.1 Implementing an AMM Smart Contract .. 52

17 User Defined Partitions .. 53
17.1 External Smart Contract Platforms ... 53
17.2 Alphabill as a Cross Chain Interoperability layer .. 54
17.3 Centralized Web2 Applications .. 55
17.4 Oracles ... 55

18 Public Token Infrastructure ... 56

19 Academic References ... 57

 5

1 Introduction: A Platform for Digital Property
Rights

The Internet, possibly the most important invention of the 20th century, was
designed to be an open permissionless network that anyone could access.
This freedom led to an explosion of creativity as humans became more
connected during the 1990s. Fast forward to 2024 and we see that the original
democratic design has been hijacked by corporate gatekeepers who can
censor access at a whim, abusing their users and otherwise tax innovation.
First the corporate platform owners do everything they can to recruit users;
then they abuse those users to make things better for their business
customers. Finally, they abuse those business customers to keep all the value
for themselves.

The underlying motivation of the Web3 community is to return the Internet to
its permissionless roots: a) giving back users control over their data, b)
democratizing ownership by providing users governance and economic rights
in the platforms and applications to which they contribute and c) preventing
corporate gatekeepers maximizing profits at the expense of users and
partners.

For blockchain to deliver on this vision a chasm of qualities must be crossed,
to provide a performant, secure and user-friendly experience. Alphabill is a
new blockchain design that attempts to do this at an industrial scale.

 A key contribution is to elevate tokens to first class citizen status. Alphabill
tokens are programmable and verifiably unique authenticated data structures,
i.e. they are not locked into a single blockchain. Instead, they are portable,
autonomous data objects that be assigned digital property rights and
traverse the Internet, whether decentralized Web3 smart contracts or
centralized Web2 applications. At each hop they can be verified and acted
upon without a trusted intermediary.

 6

Figure 1. Tokens, created in Alphabill are portable across Web2 and Web3

Tokenizing all human and machine content, i.e. potentially billions of data
objects per second, is far beyond the capacity of current blockchain
architectures and improvements of several orders of magnitude are needed.
In this paper we introduce a series of innovations: bills (not UTXOs, not
accounts) as transaction units, state tree recursion, stateless validation, a
new consensus protocol and a new computational model, all of which combine
to enable an industrial scale design.

This assignment of digital rights at massive scale would satisfy the needs of
global financial and property ownership systems. It would also enable the
integration of a financial incentive backbone into the logic of next generation
applications, and it would enable the zero-trust verification of all data on the
Internet.

This introduction is optimized for explanatory clarity. Technically precise
descriptions, academic papers, security proofs and specifications are
available at www.alphabill.org.

Output

Alphabill Distributed Machine

…

Input

Machine

Machine

Machine

Machine

Ethereum

Token

Web2 Database

Solana

Alphabill

http://www.alphabill.org/

 7

2 Design Goals

2.1 Linear Scale Production

Figure 2. Scaling through more powerful machines or many machines

There are two ways to scale a system; a) “vertical scaling”, using a more
powerful machine or b) “horizontal scaling” using parallel decomposition such
that the work is split between many machines. Developers are attempting to
use both approaches to scale blockchains today. Solana is an example of the
former where a single powerful “leader” machine orders and validates
transactions and other machines confirm the results. This approach has a hard
limit on scalability (the power of a single machine) and limits censorship
resistance through decentralization as the computational requirements limit
accessibility.

Horizontal scaling is attempted by numerous layer one protocols (Polkadot,
Cosmos, ICP, AVAX, Near, etc.) however these resemble a system of federated
chains with separate consensus instances and additional chains, called relays,
beacons, hubs etc. providing cross-chain settlement.

A design goal of Alphabill is to have practical unlimited throughput, i.e.
sufficient to tokenize all human and machine generated data on the Internet,
with a single consensus instance that provides linear scalability, without
sacrificing security, decentralization, or performance.

 8

2.2 Linear Scale Verification

Scalability of verification is as important as scalability of applications for real-
world applications. In all existing protocols, to independently verify a single
transaction a large set of related transactions must be verified. Due to this
requirement, many users choose to sacrifice the benefits of decentralization
by using “light clients” which rely on trusted intermediaries.

Figure 3. Ledger decomposability

The above figure on the left is the current model of blockchains. There is a
single Proof of Uniqueness (whether generated by Proof of Work, Proof of
Stake or some other mechanism) for the ledger created once per block.

A design goal of Alphabill is parallel decomposition, i.e., each token in the
system (either Alphabill native currency tokens or the equivalent of ERC20
user generated tokens) can be independently updated and verified in parallel.

Figure 4. Tokens are portable and verifiable off-chain or off-line.

Ledger

Proof of Uniqueness

Token Ledger Proof of Uniqueness

Token Ledger Proof of Uniqueness

Token Ledger Proof of Uniqueness

...
≅

 9

2.3 Fast Deterministic Settlement Finality

In Alphabill, authenticated data structures known as certificates provide
proofs (of uniqueness, unit state, transaction execution). These certificates
are created on-chain and potentially used off-chain. Probabilistic finality,
such as used in Directed Acyclic Graphs (DAGs), has the potential to
reorganize the blockchain which would invalidate a certificate issued during
the reorganization. As this would be problematic for off-chain users relying on
a certificate, a design requirement for Alphabill is deterministic finality.

2.4 Censorship and Attack Resistance

As has been seen during the Web2 era a single platform gatekeeper can limit
access, change pricing at a whim and in general prevent permissionless
innovation, where developers are free to develop on the platform with a
certain knowledge of the future terms and conditions. A design goal of
Alphabill is that there are no gatekeepers. i.e. there is no entity, whether a
government, organization, or individual, can exert control over the machine,
such as controlling access, set fees or otherwise prevent the machine from
continuing to operate.

Alphabill achieves censorship resistance through decentralization. To ensure
widespread accessibility as design goal is that the distributed machine should
function with consumer accessible hardware. It should also continue to
function even under the most adversarial conditions.

2.5 Deterministic Fees and Zero Extractable Value

A design goal of Alphabill is Zero Extractable Value i.e. validators should be
economically incentivized to participate in processing transactions but have
no agency to decide the price, order, or number of transactions to be
processed. As such a uniform gas price should be determined by a
decentralized governance process to ensure fees remain as low as possible
with the constraint that there are sufficient incentives to ensure an optimal
number and diversity of validators to participate in the network.

Linear scale production should guarantee, apart from short term spikes, that
long term supply (of computational power) can always match demand. If
congestion can be eliminated, then there should be no need to have a
marketplace for fees. As demand increases the network can add more
computational power, with additional machines operating in parallel to
process transactions.

 10

3 Theory of Blockchain Decomposition

Alphabill is based on a theory of blockchain decomposition2. This theory can
guarantee that there are no bottlenecks and computational resources can be
added indefinitely – the system scales linearly (production and verification)
without sacrificing security, performance, or decentralization.

Figure 5. Parallel Decomposition

To implement a decomposable blockchain Alphabill introduces five
innovations:

1. A New Transaction Unit: UTXOs and accounts do not allow parallel
decomposition. The Alphabill blockchain is based on bills (similar to
physical cash bills). This allows for the parallel updates and verifications
of tokens minted on the state tree. Transaction units are described in
section 4.

2. State Tree Recursion: The state tree is built recursively allowing for
independently verifiable blockchains to be extracted for each token.
This allows tokens minted on the blockchain to be verifiable and
actionable off-chain in the real world. State tree recursion is described
in section 6.4.

3. A New Consensus Protocol: Alphabill has a single consensus instance
across the network such that deterministic finality is achieved across
the network within one block. The consensus protocol is described in
section 8.

2 https://doi.org/10.36227/techrxiv.14994558

https://doi.org/10.36227/techrxiv.14994558

 11

4. A New Computational Model: The computational model on Alphabill
consists of two components, predicates, or unlocking conditions, for
computation that requires only single token inputs and smart contracts
for computation that requires multiple token inputs. Predicates and
smart contracts are described in section 7.

5. Stateless Validation: Validators using consumer accessible hardware
can instantly start verifying blocks without needing to synchronize the
chain. Stateful and stateless validators are described in section 6.4.

4 Transaction Units

Historically, all blockchains have been designed using UTXOs or accounts as
transaction units. As every transaction, by definition, will involve at least two
transaction units, the ledger is interconnected and the history of each asset
in the ledger is dependent on other assets. These choices severely limit the
achievement of performance goals. Either the chain gets congested or
additional layers, such as rollups or federated consensus instances are
introduced which result in compromises in security, performance, settlement
finality etc.

Figure 6. Every transaction with UTXOs and Accounts involves at least two transaction units.

 12

If the accounts or UTXOs are on different machines, then coordination is
needed between the machines to atomically execute a transaction. For
accounts this is obvious (they are on different machines and the machines
need to communicate so that one account balance goes down and the other
goes up). The same principle applies to UTXOs. If a user wishes to pay 100 units
and has two UTXOs on different machines each worth 50 units then the two
UTXOs on different machines need to be marked as spent and a new UTXO
needs to be created with a value of 100. This process requires coordination
across the different machines.

In Alphabill we use the principle of a bill-based money scheme.

Figure 7. bill-based money schemes can execute transactions in parallel.

In a bill-based money scheme, such as physical cash, the only thing that
changes during a transaction is the ownership of the bill. As no checks or
coordination is needed, the bills can be on different machines and processed
independently in parallel.

Physical cash transactions exhibit perfect parallelism of settlement and
verification. Cash transactions can settle independently, and users can
independently verify that the cash in their wallet is both available and valid
(not-counterfeit). A design goal of Alphabill is to replicate these properties
using public blockchain.

Potential limitations of bill schemes are a) atomicity - how to ensure multiple
bill transactions are atomic i.e., there is not a situation where only a subset of
bills is transferred during a multi-bill payment, and b) precise payments - if a
user has a bill worth 100 units how do they make a payment of 50 units?

In the next section we will introduce data structures that allow for atomic
precise payments within a single block through state tree splits. This can be
achieved in a way that does not break the native parallelism of the bill model.

No check needed

Bill 1. (Owner = payer)

Bill n (Owner = payer)

Bill 1. (Owner = payee)

Bill n (Owner = payee)

BILL
TRANSACTION

 13

5 Alphabill State Tree

Historically different blockchain platforms have tried different approaches to
represent the state of managed assets. Bitcoin for example stores UTXOs in
the chainstate, a LevelDB database. Ethereum uses a Merkleized Patricia Trie
to represent accounts i.e., each leaf of the tree is either an account or a smart
contract serialized by its leaf address.

In Alphabill we use a count-certified authenticated Adelson-Velsky and Landis
(AVL) tree where the nodes of the tree are units, which can be bills, tokens or
smart contracts. Tokens are first-class citizens in that each token in the
system (whether native Alphabill currency tokens or user defined tokens) is
serialized by its identifier in the state tree.

Figure 8. Ethereum uses a state tree of accounts. Alphabill uses a state tree of tokens.

Ethereum uses accounts which are represented as leaves of the state tree.
Tokens are created by smart contracts and those tokens exist as variables
inside the smart contract. In Alphabill individual tokens are created directly on
the state tree and a transaction order in Alphabill will change the ownership
of the token.

The main advantage over accounts is sharded parallelism of production and
verification i.e. state, transaction, and network sharding become trivial in a bill-
based model. In the example above in contrast with the account model where
each transaction impacts at least two accounts, a transaction in the bill model
updates only a single unit i.e. all tokens are independent – there are no cross
dependencies between tokens that require a global ordering of transactions
to achieve deterministic execution.

 14

This allows for perfect parallelism i.e., all tokens can be updated and verified
independently, and global state can be partitioned and managed by clusters
of machines (validators) operating independently in parallel.

Figure 9. Parallel execution of transaction orders

The above diagram shows that as the throughput increases the state tree can
be split into two sub-trees or shards with each half of the tree being stored
in memory of different machines. The key point is that the machines on
different shards do not need to communicate with each other during
transaction settlement. A transaction involves only a change in the ownership
of a token, validated based on local context: the token’s previous state and
transaction order only. This implies that the sub-trees can be processed in
parallel without any synchronization or coordination with other sub-trees.

To understand scalability of verification and explain how individual ledgers for
tokens can be verified in parallel we need to understand how the state tree
evolves over time.

Sub Tree 1

Transaction orders Transaction orders

Sub Tree 2

Root

No Communication

 15

5.1 Recursion: State Evolution Over Time

Figure 10. Ethereum state evolution over time.

The above diagram shows the evolution of the state tree for account-based
blockchains such as Ethereum. Time moves from left to right and there are 4
blocks with the state tree shown for each block. The state root hash value for
each block is shown in red. The leaves of the tree represent four accounts A0
to A3 (the state tree is shown lopsided for reasons which will become clear
shortly). In Ethereum the transaction units are accounts, and each transaction
will impact at least two accounts.

Every block, transaction orders will be processed which will cause the state
tree to be updated. In the figure above we show a transaction order making a
transfer from account A3 to A2 in block B1 and A1 to A0 in block B3.

B0 B1 B2 B3

Transaction Order Transaction Order

A0
A1

A2
A3

time

A0
A1

A2

A3

A0
A1

A2
A3

A0
A1

A2
A3

Acc
ou

nt
s

 16

Figure 11. Alphabill state evolution over time.

The figure above shows the evolution over time of the Alphabill state tree.
Time moves from left to right and there are 4 blocks with the state tree shown
for each block. In the state tree consists of 4 tokens A0 to A33. In Alphabill
each transaction will impact a single token.

The key difference from the previous diagram is that when the state tree is
built the leaf nodes for each token are cryptographically linked to the leaf
nodes of the previous token state (the dotted lines). As all settlement is local
and all tokens are independent it is possible to extract the history for an
individual token and allow it to be verified without requiring the history of
other units. This is shown below for an individual token in the state tree. The
blue hash-values are effectively an individual token blockchain which can be
verified independently with the same security properties as the overall
blockchain.

3 The Alphabill Yellow Paper refers to units. There are three types of units: bill, tokens and smart
contracts.

B0 B1 B2 B3

Transaction Order

time

A0
A1

A2
A3

Transaction Order

To
ke

ns

A0
A1

A2
A3

A0
A1

A2
A3

A0
A1

A2
A3

 17

Figure 12. An individual token blockchain, extracted from the main chain.

This ability to decompose the ledger into token sub-ledgers allows a recipient
of a transaction to independently verify that they are the new owner of a
token without needing the full ledger4. This is similar to physical cash. A user
cares about the bills in their wallet, not those of anyone else. Independent
verification can be done on mobile devices, or even offline, without the need
to trust third parties as in the case of having to rely on traditional “light
clients”.

Figure 13. Entire token histories can be stored locally on client-side wallets.

If users can store their tokens off-chain, then a logical conclusion is that no
transaction data needs to be stored on-chain at all5. A user can store all
necessary information (token ledger and their private key) off-chain. To
initiate a peer-to-peer transaction they will include a signed transaction order

4 Technically, what is useful as a proof of payment is a “proof of transaction execution” which applies
to a single transaction only, without the full transaction and token history.
5 There still needs to be a state tree leaf hash created to allow the validators to verify that token
ledger received as part of a transaction order was minted and is the up-to-date version.

 18

along with the token ledger, both of which will be sent to the Alphabill
Distributed Machine, which can now validate the transaction statelessly. This
approach gets as close as possible to the properties of physical cash –
physical cash bills are tokens which are self-verifiable and be passed from
party to party.

Off-line transactions

Under certain conditions the system can be extended to support transfer of
tokens with final, irrevocable payments even in the absence of network
connectivity. A payer who wishes to transfer tokens offline to a known payee
(say a subway operator) can lock6 the token which can then be unlocked
either a) after a specified period of time (say one week) by an arbitrary
transaction from the payer, or b) by a transaction order from the payer, where
the recipient can only be the known payee. In an environment with no network
connectivity the payer can then generate a transaction order for a specified
amount for the payee and digitally transfer the transaction order without
network connectivity to the payee, who can independently and without
trusted intermediaries, mathematically verify that only they can unlock the
token and claim ownership prior to the timeout period. The only information
the payee requires to verify the validity of the transaction is the genesis block
(B0 in the above figures)

Figure 14. Process for implementing off-line transactions.

6 Technically they will install a predicate – see section 7.1

 19

Once the payee has connectivity the payee will send the received transaction
order to the Alphabill Distributed Machine and claim unconditional ownership
of the tokens.

5.2 Certificates

A certificate is an authenticated data structure used within Alphabill that
contains elements that enable an interested party to verify proofs such as
proof of uniqueness, proof of ownership, proof of transfer etc. The design of
the Alphabill state tree allows for different types of certificates to be created.

• Unicity certificates — proof that the ledger, as a whole and its
components, are unique and passed validation.

• Transaction execution certificates — a proof that a transaction t is in
the block B of the blockchain.

• Unit certificates — a proof that a token has certain attributes, for
example ownership, in the state tree.

5.3 State Tree Splits

It would be inefficient to have to pre-allocate space in the state tree for every
possible token. For example, the equivalent of an ERC20 smart contract may
require the issuance of billions of tokens. Fortunately, creating state space
for all individual tokens is not necessary as, upon issuance, there are a limited
number of owners. In this section we show how the state tree can be
expanded and contracted through transaction orders.

Consider the equivalent of an ERC20 token called AToken, the issuance of
which will be 100 billion tokens. Initially, there will be a single owner (the issuer)
who will own all 100 billion tokens.

Figure 15. User created token at issuance.

 20

When a transfer of one token occurs to a new owner the tree is split and the
original token is replaced with a node with child leaves, which represent the
new fractions of the token.

Figure 16. User created token after first split.

The Alphabill AVL tree is count certified so that each parent node maintains
the total sum of created parts.

Figure 17. User created token after second split.

After a second transfer of one token the state tree looks like above7.

The same bill-splitting principle can be applied to any fungible token. For
example, the figure below shows a user who wishes to make a payment of 34
cents using a “Alpha-USD” stable coin but only has one single Alpha-USD dollar.

7 In reality the AVL tree is self-balancing. For a precise description please see Alphabill yellow paper.

 21

Figure 18. Precise payment of 0.34 Alpha-USD

Allowing for splits in this way also allows for precise atomic payments within
a single block. Joins are also possible however they are not available as part
of transaction orders. Instead, a user may make a “dust collection” swap
request such that small value tokens may be consolidated into a single token.
The dust collection procedure is executed independently during the creation
of a new block.

Note that the state tree splits and joins do not break the parallelism as all
splits and joins can be guaranteed to be local to the machine in which the split
or join occurs.

5.4 Double Spending

Double spending is impossible by design. Each unit has a unique address and
there can only be one proof of uniqueness per round, assuming the hash
function used is collision resistant.

 22

6 Distributed Machine Architecture

The Alphabill Distributed Machine operates one large state tree distributed
across a network of redundant validator nodes in a modular fashion. i.e. the
state tree is subdivided into partitions which operate sub-trees of the overall
state tree. Partitions share a common framework of unicity certification,
implemented by the Root Chain, a Delegated Proof of Stake Network. The
system is decentralized and permissionless due to on-chain Delegated Proof
of Stake mechanisms controlling the operational aspects of the network.

Figure 19. Network (validators) and state tree views of the Alphabill machine.

The left-hand side in the above diagram shows the component machines in
the network. The right-hand the state tree view i.e. the data structures
managed by respective validators. Each partition is a sub-tree in the overall
state tree. The depicted subtree of every partition is replicated across all
validators of the respective partition. Note we show the machines in the Root
Chain connected (the solid lines) and not in the Partitions to indicate that
there is a single consensus instance, maintaining the partition-wide
synchrony of each individual partition.

 23

6.1 Root Chain

The Root Chain is a Delegated Proof of Stake network that provides:

• network orchestration providing randomness and timing references
(liveness).

• enforcement of the safety property (no double-spending, no parallel
histories).

• enforcement of aggregate transaction system rules.
• enforcement of partition-level consensus.
• proofs of uniqueness (unicity certificates).

The Root Chain does not store transaction data or validate transactions. Its
primary purpose is to create Unicity Certificates which are passed down from
the Root Chain to each partition below and stored in blocks. The Unicity
Certificate includes the group signature generated by the validators in the
Root Chain after completing all necessary consistency checks. These checks
will include whether the validators in a partition are in coherence, whether
they extend the previously finalized block exactly once, and aggregate
checks for the specific transaction system in each partition (for example, in
currency partitions the money invariance is also checked).

The Unicity Certificate framework allows a common root of trust across
partitions i.e. proofs generated in one partition can be verified in another as
they share the same root of trust.

6.2 Partitions

Partitions are sub-trees of the global state tree split according to function.
System-defined partitions include the Governance Partition, Alphabill Native
Currency Partition, Atomicity Partition, User Token Partition and the EVM
Partition. Section 10 onwards describes the functionality of each partition.

 24

Figure 20. Alphabill Partitions showing system defined and user defined Partitions. User
defined Partitions can be added in a permissionless way.

Each Partition consists of one or multiple shards.

6.3 Shards

Partitions start with a single shard comprised of a set of validators all of which
share the same validation rules. A shard provides bulk transaction validation,
state-keeping, ledger handling and smart contract execution.

Figure 21. Alphabill Partitions showing a multi-shard User Token Partition

ROOT CHAIN

Alphabill
Native
Currency

User
Tokens

Atomicity EVM EthereumBTC Web2
Application

USER DEFINED PARTITIONS

Oracle

Shard 1 Shard n

…

 25

As capacity grows within a partition and the validators approach capacity8
additional shards can be added by splitting the state tree and the sub-tree
splits managed by a different set of validators.

Figure 22. A partition before and after a shard split from 1 to 2 shards, each with 7 validators.

The figure above shows how the shard state tree is split amongst the existing
validators (the black dots). New validators (the red dots) join each shard to
ensure that the number of validators per shard stays within defined limits.

The state tree can now continue to grow in each shard until it reaches
capacity again at which point another split can occur.

Figure 23. The two shards can now expand their sub trees to meet the increased demand.

Validator machines within a shard participate in a single consensus instance
in coordination with validators on the Root Chain – each shard does not have
a separate consensus instance.

8 Constraints on capacity include the memory constraints due to the size of the state tree,
computational power to process transaction orders and network bandwidth.

 26

6.4 Stateful and Stateless Validators

Stateful validators are the machines that store the state tree in memory and
update the tree in accordance with ledger rules and transaction orders.
Stateful validators that join the network need to synchronize to the current
state of the blockchain before they can propose and validate blocks.
Decomposition theory makes it efficient to have stateless validators also
participate in validating blocks. These validators do not need to synchronize
the chain i.e. all the information required to verify block proposals can be
included within the proposal itself – no additional state information is required.

Figure 24. Stateless Validators verify blocks without needing to synchronize the chain.

Stateless validators allow for massive decentralization. Anyone with additional
computational power can join the network and instantly start to earn rewards
by verifying block proposals sent by stateful validators.

 27

7 Alphabill Computational Model

There are two computational models in Alphabill, one for computations that
require only a single unit and one for computations that operate on multiple
units.

Figure 25. Predicates and Smart Contracts used for single and multi-token computations.

Both models are shown in the above figure. There are two Alphabill partitions
shown, a Token Partition and a Smart Contract Partition. Part of the on-chain
state of a token is an owner predicate or the conditions that need to be
satisfied for a transaction order to be accepted and executed. For multi-unit
computations smart contracts are used. Alphabill has a system-defined EVM
partition for smart contracts but in principle any smart contract platform can
be used.

Smart Contract
Partition

Token Partition

Ownership
Condition
Predicate

Code

State

proof

proof

Root Chain

 28

7.1 Predicates for single unit programmability

The most basic form of an owner predicate would be the verification of a
digital signature, i.e., in order to transfer ownership, the signature on the
transaction order needs to be signed by a private key that matches the public
key stored as part of the predicate.

Figure 26. Simplified data format for a token.

Shared ownership of tokens can be managed through predicates on individual
tokens. A predicate might encode a condition saying, “next transaction order
must be signed by public key A OR B”, giving shared ownership semantics.
Another example would be a condition saying “next transaction order must be
signed by public keys A AND B” giving multisig semantics to ownership.
Predicate evaluation is part of the transaction validation rules – all performed
locally within a shard, without requiring global ordering of transactions or the
existence of shared state. Predicates are described in detail in section 13.

7.2 Smart contracts for multi-unit programmability

When a computation such as a smart contract requires multiple tokens as
inputs (for example a DEX, (decentralized exchange), then predicates are
used to change the ownership condition predicate such that only a specified
smart contract is capable of transferring ownership.

To allow a smart contract to verify a proof from another partition we take
advantage of the Unicity Certificate framework, to allow a common root of
trust. The Unicity Certificate, generated by the Root Chain, provides for the
creation of a proof of a token’s state, and this proof can then be transported
across shard boundaries, interpreted, and acted upon by smart contracts on
different shards.

TOKEN FORMAT
TypeMeaningField

256-bitToken IDi

varToken datad

ScriptOwner predicate!

 29

The first step is to transfer conditional ownership of a token to a smart
contract. This is done using predicates, where a user sends a transaction
order to a token address assigning ownership to a smart contract. Once the
new predicate has been registered in the token ledger the data and proof can
be sent to the smart contract address. As the smart contract and token share
a common unicity framework the smart contract can verify the correctness
of the proof of the token transfer and execute its code accordingly. The
smart contract then generates proofs which can be used by a new owner to
initiate settlement back on the original token shard.

An example of implementing an Automated Market Maker (AMM) is shown in
section 16.

Figure 27. Smart Contract Composability

Smart Contracts are composable, in that multiple smart contracts on different
shards can be chained together such that the output of one contract can be
used as the input to the next contract.

 30

7.3 Security Advantages of Separating Execution from Settlement

The advantages of this approach to computation are parallelism and
protection from “rug-pulls” due to malicious or flawed smart contracts.
Settlement (i.e. change in ownership of tokens) does not happen within the
smart contract. Only after the smart contract executes can the proofs be
generated necessary to initiate settlement on the token partition. This makes
it possible to introduce audit functions or checks post smart contract
execution but prior to settlement.

This approach of predicates for single unit programmability and smart
contracts for multi-unit programmability combines the best of both worlds -
there is no shared state amongst contracts and developers have the flexibility
to use any development environment. Alphabill has its own EVM based
development environment, but any run time can be used including other
blockchains, provided the environment has access to the Unicity Certificate
generated by the Root Chain in order to verify the proofs it receives as inputs.

 31

8 Alphabill Consensus Protocol

There are several different types of ledger consensus used in blockchain
protocols.

Longest Chain Rule (e.g., Bitcoin): blocks are proposed; if the next block
chains from this block and then some more valid blocks chain continue the
chain, then the block can be considered as final (with probability depending
on chain length).

Probabilistic Convergence (e.g., Avalanche/Snowball): an optimization of the
previous where the validators gossip and stick to the majority until converging
to a likely agreement about the next block’s content.

Deterministic Finality (e.g., Tendermint): nodes run a consensus protocol (in
the narrower sense of consensus from distributed systems research 9) to
reach agreement and immediately finalize every block.

Alphabill is similar to Tendermint in that it provides deterministic finality. The
Root Chain uses a low-level consensus module based on chained Hotstuff10, a
BFT consensus protocol specifically optimized for latency not throughput (as
the Root Chain does not need to validate client transactions).

Figure 28. Validator Virtualization

9 See for example Chapter 5 of "Introduction to Reliable and Secure Distributed Programming" by
Christian Cachin, Rachid Guerraoui, Luís Rodrigues. Springer, 2011. DOI: 10.1007/978-3-642-15260-3
10 https://arxiv.org/abs/1803.05069

 32

A virtualization layer is operated by the Governance Partition validators, such
that validators who wish to join the network are allocated at random to either
the Root Chain or a specific shard on a partition. Validators build a reputation
in a shard and are incentivized based on committed stake, equalization, and
stabilization rules, ensuring balance and security across different shards.

Figure 29. A single consensus instance.

The Root Chain is isolated from the transaction processing load. Instead of
client transactions, the Root Chain validators only need to validate and
process aggregate summaries of proposed state transfers from shards. They
effectively check the results of the shard validators and confirm they are in
coherence.

Importantly the set of validators on a shard validate and execute transactions
but do not participate in a shard-level consensus protocol. Shard validators
cannot create a valid block unless it has received a Unicity Certificate from
the Root Chain.

 33

8.1 Steps in the Consensus Protocol

1. Clients send transaction requests to a shard (wallets know which shard
as the identifier of the token encodes the relevant information). The
same principle applies to smart contracts.

2. Validators within a shard receive transaction orders from clients, check
them and forward to parallel block proposers, based on round-specific
mapping.

3. Block proposers validate transactions as they arrive, assemble a block
proposal, and broadcast it to other validators in the shard. Validators
validate the block and update their local state tree.

4. Each shard validator then independently broadcasts an aggregate
summary of its proposed state transition to the validators in the Root
Chain. Importantly the validators in shards do not participate in
independent consensus protocols. They simply demarcate blocks,
validate transactions, and send a summary of the result to validators in
the Root Chain.

5. Root Chain validators reach consensus confirming that received
summaries from shards are in coherence (this is a defined majority
agreement depending on the requirements of each partition) and form
valid, safe state transitions extending the previous certified states of
shards. Unanimous shard-level agreement would require less validators
in a shard to ensure decentralization but at the expense of liveness.

6. The Root Chain validators collectively generate a cryptographic proof
of uniqueness or Unicity Certificate (UC) as the final step of the ledger
consensus protocol.

7. This UC is returned to each shard validator which then adds it to its
block to finalize it, and the process repeats.

8. The next round is started, parameterized by the recent input from the
Root Chain.

 34

Figure 30. Simplified message flow of a consensus protocol round.

8.2 Delegated Proof of Stake execution

Alphabill is governed by Delegated Proof of Stake (DPoS) rules, as an efficient
and environment-friendly alternative to Proof of Work mining. The rules are
executed on-chain by the Governance Partition, avoiding the need for
centralized parties overseeing the operational aspects of the network. DPoS
rules perform permissionless validator assignment into partitions and shards
and remunerate the validators and the stakers behind them with block
rewards.

DPoS rules prevent “sybil attacks” by requiring that each validator is backed
by a possibly delegated but unique stake, which, due to the scarcity of ALPHA
tokens, limits the number of candidate validators. Stake is also a tool in the
toolbox of crypto-economic security layer. Validators’ block rewards
correlate to the amount of stake as well as the stability and the amount of
usable work performed.

 35

8.3 A comparison with federated blockchains.

It is informative to compare the Alphabill approach with other approaches to
partitioning.

Figure 31. Federated vs Parallelizable Blockchains. Periodic relays vs constant connection.

Previous attempts at horizontal scaling have taken a federated approach,
where multiple blockchains operate semi-independently, each with their own
consensus protocols run by a distinct set of validators. Federation occurs via
“bridges” or “relay chains” that allow communication between the different
blockchains. The security model of each blockchain in the federation is
distinct and each may only have a small number of validators, and an even
smaller number of relay chain or bridge nodes. This approach has uses in
decentralized applications, where small applications can be run in separate
blockchains, each of which has lower security requirements than what would
be needed for a global settlement layer.

In Alphabill’s case, the partitions are sub-trees of a large, distributed state
tree, thus there is no need for periodic relaying of messages or trust anchors,
and no inherent security risks. In other words, it is not a periodic process but
a constant connection, greatly enhancing performance as well as security.

8.4 A comparison with layer two scaling solutions

Layer two solutions are proposed as solutions to the scalability limits of layer
one protocols however these either sacrifice security (Optimistic Rollups) or
performance (ZK Rollups). Due to the state commitments on the layer one,
they improve throughput by using centralized components before hitting a
hard limit, improving layer one performance about two orders of magnitude at
most. There is also no direct way to settle transactions across rollups -
whether that is a simple payment or linking smart contracts together
(composability). Another challenge for rollups is censorship resistance – the
sequencer is typically a single monolithic server.

 36

9 The Alphabill Trust and Security Model

The parallelism of Alphabill allows for different trust models to be selected by
users. Every user can independently audit the individual histories of tokens
that they have ownership of. They can store not just the private key that
controls transfer of the token but also the token ledger itself. This
independent verification at the token level opens up new methods to ensure
data availability and detection of malicious activity.

There are effectively five layers of security to detect and mitigate malicious
behavior of validators.

a) The first layer happens during the block production process. Validators
on a shard independently send an aggregate summary of their
transactions to a set of Root Chain validators. On a partition level basis,
the required level of agreement between the shard validators can be
selected through a partition management governance process to
determine the level of safety vs liveness for the partition in question.
This layer guarantees security under the assumption that only a limited
fraction of validators is malicious.

b) The second layer also happens during the block production process. A
single honest validator that is part of the validator set within a shard
can detect malicious activity through the validation of transactions. If
malicious activity is detected a fraud proof can be generated and sent
to the Root Chain prior to the Unicity Certificate being created and
returned to the shard. This layer guarantees security on assumption
that there is at least one non-colluding validator observing the invalid
block proposal. There is no restriction on the number of validators in a
shard and the settlement time is not impacted as the number increases.

c) The third layer is crypto-economic security. Here, the underlying
assumption is that validators are malicious, but economically rational
actors. The cost of losing rewards and potential slashing outweighs the
economic gain of malicious activity. It is still possible that a malicious
actor behaves irrationally, for e.g., fame, but it is very unlikely that a
majority of validators behave in a self-sacrificing way.

d) The fourth layer of security is applied post block production. Here the
underlying assumption is that all validators in a shard are potentially
malicious and adaptively collude. Stateless validators participate in a
crowd-sourced verification of the ledger by sharing the work of
auditing every block in every shard in every partition. If an inconsistent
block is discovered a fraud resolution process is initiated with potential
slashing of offending validators. This function has the additional
benefit of confirming data availability of the ledger.

 37

e) The fifth layer of security relies on users to verify the history of each
individual token that they take ownership of. In Alphabill, due to
decomposability, a user can do this independent verification at the
token level i.e. users do not need to rely on validator-cluster generated
proofs but can instead verify compact token ledgers. In other words, a
recipient of a token can verify that a) the token was minted in a valid
genesis event and all historic transactions associated with that token
have been executed correctly.

d) and e) are unique to Alphabill due to state tree recursion and
decomposability.

The analogy with physical cash is relevant. When someone gives you a 20 USD
note, you just check the validity of that note. You don't need to run the entire
economy through your device and check every other transaction in history to
be sure that your 20 USD note is valid.

9.1 Breaking down security into its components

The most important aspect of security is the property of safety. This includes
non-forking at the token level (no double-spending) and at the partition level
(no alternative hidden histories of partitions). In order to fork, an attacker
must control a configurable number between 51% and 100% of partition
validators AND at least 2/3 of Root Chain validators, that is, the Root Chain is
offering “shared security” to partitions.

• The property of validity (rejecting invalid transactions) is guaranteed
by a configurable number between 51% and 100% of partition validators
and remains efficiently auditable to token owners (token ledgers) and
the world, thanks to unicity guarantee.

• The property of liveness is guaranteed by between 49% to 0% of

partition validators (complement to previous) OR at least ⅓ of the Root
Chain validators.

• Data availability of transactions is provided by a quorum of partition

stateful validators.

These honest majority assumptions apply to the first two layers of security
encompassing the distributed machine setup (see previous section). All other
layers, like the crypto-economic security which works even if all validators are
dishonest, are effective in parallel and enforce the overall security.

 38

10 Decentralization and the Blockchain
Trilemma

In the original Bitcoin blockchain there is no requirement for users to trust
anyone. A user can download the entire blockchain, go through the ledger
transaction by transaction to independently verify its consistency. However,
as the system scales, this approach inevitably leads to centralization. For
example, at 1M transactions per second the Bitcoin blockchain would be in the
order of one Exabayte of data, making it beyond reach of individual users to
conduct independent verification. As such a major challenge and design goal
of Alphabill is to scale without sacrificing decentralization.

To many in the community due to a widely held belief known as the
“Blockchain Trilemma” this is considered impossible. The term, as coined by
Vitalik Buterin, states that decentralized networks can only provide two out
of three benefits at any given time with respect to decentralization, security,
and scalability.

The challenge with this and other rules of thumb such as the “Nakamoto
Coefficient” is that, while they can be potentially useful generalizations, they
are not based on science. To be more scientific the abstract concept of
security needs to be decomposed into its sub-components, addressed by a
sufficient amount of validation resources. The breakdown of security into its
components is described in the previous section.

Decentralization is a compromise. More decentralization adds overhead, as
there are more replica machines, synchronizing the state and re-doing the
same computations to validate state changes, in order to overwhelmingly
outbalance the effect of a malicious entity trying to obstruct or overtake the
network.

Alphabill achieves efficiency by providing redundancy in a flexible way. As the
network is sliced into task-specific partitions; decentralization is addressed
individually by assigning necessary quorum sizes of stateful and stateless
validators for partitions. The number of validators per partition does not
impact performance allowing the system to have partitions with a very high
level of decentralization, e.g., the governance and native currency partitions,
or running with just a few validators, e.g. enterprise applications on dedicated
partitions.

 39

In summary, with a decomposable blockchain such as Alphabill it is possible to
achieve all three elements:

• Scalability is achieved by having many shards validating transactions
in parallel. Crucially, cross-shard communication is not required during
transaction settlement, ensuring performance is not degraded as the
system scales.

• Security is achieved by decomposing it into its sub-components, each
addressed by a sufficient amount of validation resources. Users can
independently verify the ledger histories of individual tokens that they
receive, eliminating the need to trust validator consensus.

• Decentralization is achieved by having a sufficient quorum of stateful
and stateless validators per shard, managed in a permissionless way by
on-chain Proof of Stake processes. Stateless validation allows anyone
with consumer accessible hardware to participate in verifying blocks
without synchronizing the chain in advance, democratizing access and
enabling mass participation.

 40

11 Partitions and Alphabill Transaction
Framework

The use of partitioning allows Alphabill to differentiate the transaction
validation rules, to optimize for specific use cases across a wide array of
possible partition types. Each partition must implement a transaction system,
which have:

•   units u, each unit having a unique identifier, owner predicate and unit
data.

•   transactions that delete units, create new units, or change the data
of the units.

The Alphabill transaction framework defines a language for describing the
functionality of transaction systems: state and transactions (syntax and
semantics) as well as provides libraries and toolkits for developing transaction
systems. The framework, based on descriptions of transaction systems,
registers and assigns identifiers to transaction systems, provides the unicity
certificate service for the registered transaction systems: unique root hash h
and summary value V for every pair (n;  ), where n is the block number.

Some of the elective features available to developers are listed below.

11.1 Censorship Resistance and Fair Ordering

Transactions are encrypted at the client side using per-epoch, per partition
public key, and then delivered to partition validators, who order transactions
in blind and commit to this ordering. Before validation and execution, each
partition validator threshold-decrypts transactions and then they exchange
their decryption shares. After combining enough shares, it is possible to
obtain transactions in clear and continue as usual. Fee payment is handled by
the "double envelope" method.

Alphabill rotates the block proposer role at every round, thus, even without
encryption, transactions may be only delayed until accepted by an honest
validator.

 41

11.2 Private Transactions

In so-called “dark partitions”, transactions are accompanied with zero
knowledge proof of correctness: input unit is valid, transfer authorized by the
owner, other transaction rules satisfied. Validators see opaque transactions
orders only, without revealing unit data and transaction counterparties.

11.3 ZK Validity Guarantee

The data model of Alphabill allows some partitions to use zero knowledge
proofs to prove the validity of transaction execution to the Root Chain. This
extends the shared security umbrella of Root Chain from safety property to
the validity property. Partitioning allows the use of specific ZK friendly
cryptographic algorithms in this partition, and to place limits to the
complexity of owner predicates, greatly increasing the efficiency (proving
speed) of such partitions.

11.4 KYC and AML

Know Your Customer (KYC) and Anti Money Laundering (AML) rules are
implemented at the client interface (wallet, crypto exchange) level, while the
successful enforcement is checked by partition's ledger rules, whenever
required by use-case specific compliance environments.

12 ALPHA Native Currency Partition

This is a system-defined partition that manages ALPHA, the native currency
of Alphabill. The ALPHA bills have three use cases:

• They can be staked to participate in Delegated Proof of Stake.
• They can be used as means of payment for services on the network.
• They can be used for on-chain governance where the bills are used in a

voting process.

For a detailed description of the tokenomics please see www.aphabill.org

 42

13 User Token Partition: Object Oriented
Design

Alphabill offers a flexible framework for defining custom token types, creating
tokens of these types, and transacting with such tokens.

13.1 Fungible and Non-Fungible Tokens (NFTs)

Each token type in Alphabill is designated as either fungible or non-fungible.
Fungible and non-fungible tokens are represented differently in the state tree:
fungible tokens have an amount (64-bit unsigned int) and can be split and
joined. NFTs, on the other hand, might contain a URI and arbitrary binary data
which is possible to update.

The most important property of a fungible token is the amount or value that
it represents. A fungible token can be split into several smaller tokens of the
same type so that the sum of the values of the resulting tokens is equal to
the value of the original token. Conversely, several fungible tokens of one type
can be joined into one larger token of the same type so that the value of the
resulting single token is equal to the sum of the values of the input tokens. In
both cases the source tokens are consumed in the process (deleted from the
state tree), to ensure that neither of these operations create or destroy value
and don’t consume memory.

Non-fungible tokens, in contrast, have distinct identities and, in general, even
two tokens of the same type are not interchangeable, even though they may
share some characteristics. While currently the most well-known use of non-
fungible tokens is collectible items of digital artwork, we expect this to be a
relatively niche application in the longer term and most future use cases to
revolve around representing various permissions, rights, and credentials
instead.

13.2 Predicates

Predicates are functions that return a single TRUE or FALSE. They are used to
check if an input meets some condition. For example, isDigit(c) might be a
predicate function that returns TRUE if its input character c is a digit
and FALSE otherwise.

 43

Predicates are used in the User Token Partition to enable the customization
and programmability of tokens, similar to Bitcoin locking and unlocking scripts.
There are many types of predicates used in Alphabill and their use together
with object-oriented inheritance enables a rich ecosystem of tokens to be
developed.

13.3 Owner predicate:

In general, ownership of each token in Alphabill is controlled by an owner
predicate. The predicate is a function that receives as inputs a transaction
order and the current state of the unit that the transaction targets. The
function returns a decision whether the transaction should be accepted or
rejected. In most cases, the condition is that the transaction order must have
a signature that verifies with a public key embedded in the predicate. If a
transaction order is deemed valid by the predicate, it is allowed to execute.
Executing a "transfer" transaction means just replacing the current owner
predicate with a new one. Often, the new predicate is a similar function but
contains a different public key – with the effect that a different private key
must be used to sign the next transaction order affecting the token; since
the old owner can no longer produce valid transaction orders, this indeed
means that the control of the token has been handed over to the new owner.

Figure 32. A simplified example of an owner predicate being updated through a transaction
order.

Transaction Order

TypeMeaningField

256-bitToken IDi

ScriptNew owner predicate!´

VarProof for old owner predicates

Token State (old)

TypeMeaningField

256-bitToken IDi

varToken datad

ScriptOwner predicate!

Token State (new)

TypeMeaningField

256-bitToken IDi

varToken datad

ScriptOwner predicate!´

M
at
ch

Sa
tis
fy

Update

 44

The above figure shows a transaction order (on the left) and the state of a
token before and after the transaction order is executed. The validator does
the necessary checks (such as making sure the tokenID corresponds to an
existing token of the correct type for the transaction), then the “proof for old
predicate” is computed to make sure it satisfies the current owner predicate.
If so then the owner predicate is updated.

13.4 Token Types

Each user-defined token belongs to a token type. The type determines
several properties common to all tokens of this type. Token types are also
represented as first-class entities in the User Token Partition, i.e. each token
type is allocated space in the state tree. Anyone can define a token type but
unlike regular tokens, they cannot be transferred. Instead, a token type
defines several predicates that affect the tokens of this type.

Figure 33. A simplified illustration of a non-fungible token type

NON-FUNGIBLE TOKEN TYPE FORMAT
TypeMeaningField

UTF-8 textSymbol (short name)sym

UTF-8 textName nam

UTF-8 textIcon (image)ico

256-bitParent typei

ScriptMint predicate!m

ScriptInherited owner predicate!o

ScriptInherited subtype predicate!s

ScriptData update predicate!d

 45

13.5 Mint Predicate: Enforcing Restrictions on Minting

The mint predicate must be satisfied to create new tokens of this type. A
typical example is that the minting order may be required to be signed using
a specific private key – which would limit the issuance of new tokens of this
type to the owner of the key. This condition is freely programmable and can
enforce many other kinds of restrictions. For example, the creator of the
token type may require royalties for the use of the type; this can be enforced
by having the minting condition check for proof of payment. Another example
is limiting minting to a certain set of authorized parties; this can be enforced
by having the mint predicate require proof of membership in the
corresponding list, which can itself be implemented and managed as a special
user-defined token.

13.6 Inherited Owner Predicate: Enforcing Restrictions on

Transfers

A second predicate in a token type is the inherited owner predicate of all
tokens of the type. With this predicate defined, any transfer order with any
token of the type will have to satisfy both the owner predicate on the token
itself and the inherited owner predicate from the token type.

Figure 34. Inherited owner predicates are immutable and not replaced by transaction orders.

Transaction Order

TypeMeaningField

256-bitToken IDi

ScriptNew owner predicate!´

ScriptProof for old owner predicateso

ScriptProof for inherited owner
predicatesi

Token State (old)

TypeMeaningField

256-bitToken IDi

varToken datad

ScriptOwner predicate!o

ScriptInherited owner predicate !i

Token State (new)

TypeMeaningField

256-bitToken IDi

varToken datad

ScriptNew owner predicate!´

ScriptInherited owner predicate !i

M
at
ch

Sa
tis
fy

Update
Sa
tis
fy

 46

The crucial difference between the two is that the transfer transaction
replaces the owner predicate on the token itself, but the inherited owner
predicate is immutable and can therefore be used to define restrictions that
the owners of the token cannot remove. A very simple example is making
tokens non-transferable by setting the inherited owner predicate to a
function that always returns false; a possible use for such tokens is
representing any non-transferable credentials such as driving licenses or
academic degrees. Another possible use case for the inherited owner
predicate is implementing mandatory royalty payments to the original author
of a digital artwork whenever the work is sold from one owner to the next.

13.7 Inherited Subtype Predicate: Enforcing Restrictions through

Inheritance

Another predicate in a token type is the inherited subtype predicate. When a
subtype is defined, the tokens of the subtype inherit the properties of their
parent types along the inheritance chain. As an example, many jurisdictions
limit certain financial products to accredited investors only in order to prevent
less experienced parties from taking undue risks. Some bonds fall into this
category and (as a rather simplified example) this can be modeled by having
a "generic bond" token type from which a "restricted bond" type is derived
where the "generic bond" type defines inherited owner conditions that apply
to investors buying any bonds (such as the buyer having passed the KYC
checks) and the "restricted bond" type adds the condition that the buyer has
to be an accredited investor. Transfers of tokens of the "generic bond" type
need to satisfy in addition to the tokens' owner predicate the predicates for
transfer of the "generic bond" type. Transfers of the “restricted bond” type
need to satisfy the same predicates as the “generic bond” type and in
addition the predicates for the “restricted bond” type.

 47

Figure 35. Examples of token type inheritance

In the spirit of object-oriented modeling and design in general software
engineering it is possible to inherit many levels deep and define a rich
ontology of token types.

13.8 Data Update Predicate: Implementing State Machines

Each non-fungible token has a "data" field. The contents and interpretation
of this field are entirely user-defined. The data is mutable, subject to
satisfying an additional predicate called the data update predicate. This
works like the other predicates: a user sends a transaction order which
supplies the new data that should replace the old data. Both the old and the
new data are supplied as arguments to the predicate and if the predicate
returns true, then the token's data is changed by the transaction.

A

B

C

Digital Art Type

Pudgy Pandas Type

Enforced Royalties
Pudgy Pandas Type

A

B

C

Generic Bond
Type

Restricted Bond
Type

US Investor Only
Restricted Bond
Type

A

DC

Carbon
Credit Type

Reforestation
Type

Sequestration
Type

B

Mineralization
Type

 48

Figure 36. Simplified example of an NFT owner updating the NFT data.

While the data is mutable, the data update predicate is not. It is defined when
the token is created and cannot be modified after that. Additionally, non-
fungible token types can define clauses that are inherited into the data
update predicates of all tokens of their types. This allows application
developers to implement various kinds of state machines where the data
update predicates specify which state transitions are allowed and which are
not, and those rules cannot be overridden by the token owners.

Putting together the features of inheritance and controlled mutability allows
developers to create a rich ecosystem of useful tokens that can be used to
represent real world processes and use cases. Tokens can be directly used for
the exchange of digital rights, goods, and services, and they can be
programmed to follow business processes in an automated decentralized
manner.

Transaction Order

TypeMeaningField

256-bitToken IDi

varNew token datad´

ScriptProof for data update predicatesd

Token State (old)

TypeMeaningField

256-bitToken IDi

varToken datad

ScriptOwner predicate!o

ScriptInherited owner predicate !i

ScriptData update predicate !d

M
at
ch

Sa
tis
fy

Update

Token State (old)

TypeMeaningField

256-bitToken IDi

varToken datad´

ScriptOwner predicate!o

ScriptInherited owner predicate !i

ScriptData update predicate !d

 49

14 Atomicity Partition: Decentralized
Exchange

In a sharded blockchain system it is useful to provide native support for
atomic transactions. These can be in the form of multi-token atomic transfers
or atomic swaps between different token types (e.g., for Delivery versus
Payment where assets are exchanged for currency). In a single machine model
this is straightforward; smart contracts such as Uniswap have access to the
entire global state and can ensure atomicity – either the contract succeeds,
and multiple tokens are swapped, or the contract fails, and no ownership is
changed. In Uniswap, the smart contract provides both exchange and
settlement services - these aspects of trading are typically separated in
traditional financial applications for reasons of scalability and specialization.

In Alphabill a dedicated atomicity partition provides this functionality,
allowing decentralized exchanges to be separate from the settlement
operations.

15 Governance Partition

The governance partition handles voting on governance proposals and
manages validators and partitions. The role of this partition is sixfold:

a) On-chain governance: voting on governance proposals.
b) Partition Management: adding and removing new partitions.
c) Validator Assignment: managing validator life cycles and reputations,
d) Network Capacity Management: approving dynamic sharding proposals
e) Validator Reward Handling: unlocking “common good” rewards, staking

rewards, Root Validator and Transaction Validator rewards.
f) Software Certification: approving updates to transaction system

specific validation software and coordinating software updates.

 50

Latency in this partition is not critical as the operations performed here
happen over a longer timescale than actual transactions. As such the block
time can be much longer than other partitions, enabling mass participation.

As a decentralized public blockchain, Alphabill has an open validator set, free
for public participation. Governance operations are automated as much as
possible: for example, validator assignment into shards happens
automatically, using a secure on-chain randomness beacon. Similarly,
validator rewards and pay outs are calculated automatically using
cryptographically authenticated data from other partitions.

15.1 On-chain Voting

Perhaps the most challenging part of governance is on-chain voting for
governance proposals: a good solution needs to balance the needs of a
diverse set of stakeholders while enabling timely and efficient decision
making.

Voting in Alphabill is implemented in a series of steps to ensure a smooth
transition to a well-oiled governance process.

In the first release, all decisions regarding protocol changes will be
implemented fully off-chain, allowing for more experimentation in developing
community-wide decision processes. The Alphabill Foundation coordinates
discussions and helps make sure to include opinions from as many
stakeholders as possible.

In a later release, the Governance Partition will implement fully on-chain voting,
using a mix of delegated token voting and a bicameral setup allowing for more
diverse stakeholder participation. Eventually it can be used to vote on all
matters at hand, including software updates for the Alphabill platform.

 51

16 Alphabill EVM Partition

Solidity and the Ethereum Virtual Machine (EVM) were hugely significant
contributions to the community. It is possible to celebrate these inventions
while recognizing their limitations. Ethereum’s implementation of smart
contracts has one major limitation – it is based on shared memory i.e., it
assumes a shared global state. This enables composability of smart contracts
but comes at the cost of scalability. Since the state is global, it must be able
to be stored, and manipulated, in its entirety, on every validator. This implies
that the overall global state can never grow larger than can be processed by
a single machine, and that computation cannot take place in parallel.

Alphabill implements an EVM partition as a system-defined partition as shown
below. This partition enables developer to deploy Solidity programs however
this partition is not shardable, due to the limitations described above.

Figure 37. Multiple EVM Partitions

For scalability, the Alphabill architecture allows multiple EVM partition
instances to operate in parallel. Smart contracts deployed in different EVM
partitions do not share memory and cannot call each other directly.
Interoperability is enabled by exchanging proofs which can be verified due to
the common root of trust.

 52

16.1 Implementing an AMM Smart Contract

In the above figure tokens live in the User Token Partition and an AMM contract
lives on the EVM partition. The mechanism to call a smart contract works
without actually moving the token, only the predicate on tokens is changed
to allow the smart contract to verify that it is the new owner.

The proof of a token being in the required state is sent to the contract with a
subsequent transaction order i.e. the first transaction order is sent by the
user to the token shard to lock the token (locking here means that only the
specified smart contract can unlock it). A second transaction order is sent by
the user to the smart contract address which includes the transaction
request to the smart contract as well as the proof that the token has been
locked.

A simplified constant product AMM contract would have two token pools in
contract memory, with identifiers (the state tree address) of the tokens
locked and sent by liquidity providers.

A user who wishes to swap tokens will send a transaction order to the
contract’s Swap() function, with locked token proofs as an argument. The
contract will then calculate the amount of returned tokens from the pair using
the constant product formula, and create unlocking proofs in its memory and
terminate. Post block creation the user can use the unlocking proof to claim
ownership of the returned tokens.

Here is simplified pseudo-code:

function SwapToB(tokensA_in):
 invariant = poolA * poolB // the product of pool sums is kept constant
 new_poolA = poolA + tokensA_in
 new_poolB = invariant / new_poolA
 outB = poolB - new_poolB // sum of returned tokens B
 transferTokenBTo(sender, outB) // creates unlocking proof(s)

The liquidity providers add new tokens to the contract pair-wise in order to
maintain the exchange rate. When users see arbitrage opportunities they can
make token swaps, which will bring the exchange rate close to the real-world
exchange rate.

 53

17 User Defined Partitions

Alphabill is designed such that partitions can be added by users in a
permissionless way. These partitions can be anything from the Bitcoin and
Ethereum blockchains to a Web2 database.

Figure 38. User defined partitions

17.1 External Smart Contract Platforms

To make chains interoperable a subset of validators on different chains may
join the Alphabill framework as a partition i.e. they will request a partition ID.
connect to the Root Chain and use a unicity certificate, generated by the
Root Chain to certify its internal state. That state can then be transported
across partition boundaries, verified, and acted upon in other partitions.

For example, to transfer a user token in Alphabill into an Ethereum smart
contract a user will first transfer the Alphabill token into a state which gives
specific control to an Ethereum smart contract. The proof that control has
been given will be generated by the user and sent to the Ethereum smart
contract address. As the Ethereum validators are connected to the Root Chain,
they share a common root of trust, and the smart contract can verify the
proof. The smart contract will then credit its internal account structure,
execute, and redistribute value amongst its internal accounts. If a user wishes
to withdraw tokens from the smart contract they can request a withdrawal,
the smart contract will debit the user’s account and then generate a proof
that can be used by the user to reclaim ownership of the token on the Alphabill
User Token partition.

 54

17.2 Alphabill as a Cross Chain Interoperability layer

It is often claimed within the crypto community 11 that cross-chain
communication is impossible without trusted third parties. However, they
assume that an atomic swap requires solving the following problem:

There are two chains X and Y. One wants to add a (swap) transaction
t to both chains such that t is either added as a valid transaction to
both chains, or none of the chains.

This task is indeed known to be impossible without a third referencing party
as proved in 1980 by Even and Yacobi12. However, the atomic swap solution in
Alphabill does not require a transaction t be simultaneously and atomically
added to both chains. Instead, all four possibilities are considered:

a) t is included in both X and Y
b) t is included only in X
c) t is included only in Y
d) t is included in neither of the chains

The predicate of the transaction t guarantees that only in the first case, t
changes the ownership of a unit. This is achieved by using a special predicate
in t that guarantees the next properties:

• the (claimed) new owner can make the next transaction only by
presenting evidence that t was accepted in the other chain.

• the previous owner can make the next transaction only by presenting
evidence that t was not (and will not be) accepted in the other chain.

The Alphabill Atomicity Partition, together with User Defined Partitions in
which a subset of other chain validators are connected to the Root Chain
makes it possible to implement decentralized cross-chain swaps and other
inter-blockchain operations in an atomic trustless manner.

11 For example, “SoK: Communication Across Distributed Ledgers” https://eprint.iacr.org/2019/1128.pdf

12 S. Even and Y. Yacobi. Relations among public key signature systems. Technical Report 175,
Computer Science Dept., Technion, Haifa, Israel, March. 1980).

 55

17.3 Centralized Web2 Applications

The User-Defined Partitions do not need to be decentralized. For example, it
could be an existing enterprise application. The application can request a
partition ID, receive, and verify tokens and then generate proofs to reallocate
those tokens based on the application logic. This is similar to Ethereum layer
2 logic but enables any type of application, including existing enterprise and
Web services to participate in the framework.

17.4 Oracles

A similar approach allows for external data sources to provide certified data
to be used within the Alphabill platform. This can be consensus Oracles such
as Chainlink or Gnosis, centralized external market data providers such as
exchanges or hardware Oracles such as IOT devices. In the case of exchanges
there is a single source of truth for market data – the exchange publishes the
data. To make this data available in Alphabill an exchange will request a
partition ID and use the Unicity Certificate service from the Root Chain to
certify their data and allow users to transfer that data to be used in a relevant
smart contract where it can be verified as authentic.

 56

18 Public Token Infrastructure

In a tokenized Internet every data object created is or has an associated
token13 , an authenticated and programmable data structure which can be
assigned property rights that can be
transferred without a trusted authority.

The cryptocurrency tokens and digital art
NFTs we have seen in the first iterations of
blockchain networks are just examples in the
universe of data objects that can be
tokenized. In our view the next version of the
Internet all human and machine generated
data will be tokenized.

Public Token Infrastructure, the evolution of
Public Key Infrastructure (PKI), replaces digital
signatures and timestamps with programmable tokens that have an additional
proof of uniqueness.

Figure 39. Public Token Infrastructure

PKI, invented in the 1970s, has proved extremely successful for its original use
case, i.e. sharing a secret across an insecure channel. However, the complexity
and cost of key management means that it is almost universally not used to
authenticate data. Today with some very few exceptions data is just 1s and
0s without any mechanism beyond trust to verify where it came from, when it
was created etc.

13 The data is the token for cryptocurrency. For other types of data, the token can encapsulate or be
linked to data.

Public Token InfrastructurePublic Key Infrastructure

Tokens (fungible, non-fungible, transferable…)Digital signatures, timestamps

Trust no one (public verifiability)Trust an Authority

Dynamic, programmableStatic, not programmable

Universe of data

Digital Art
NFTs

Cryptocurrency

 57

One major innovation of Bitcoin was to prove the uniqueness of data (the
Bitcoin blockchain), a proof based on the assumption that the amount of
energy required to reverse the Proof of Work algorithm would be practically
impossible. Proof of uniqueness is necessary if data, such as currency tokens,
has ownership and that ownership must be uniquely determined, and “double
spending” prevented.

Public Token Infrastructure is a set of tools and technologies enabled through
the Alphabill blockchain which extend PKI to support this proof of uniqueness
property at the individual data object level. In this view cryptocurrency tokens
or NFTs are just a tiny fraction of the universe of data, all of which can be
tokenized.

19 Academic References

A. Buldas, et al., “A unifying theory of electronic money and payment systems,’”
IEEE TechRxiv, May 2022 https://doi.org/10.36227/techrxiv.14994558

A. Buldas, D. Draheim, M. Saarepera, “A Theory of Secure and Efficient
Implementation of Electronic Money,” SN COMPUT. SCI. 4, 861 (2023)

A. Buldas et al., ``An Ultra-Scalable Blockchain Platform for Universal Asset
Tokenization: Design and Implementation” IEEE Access, July 2022

A. Buldas, D. Draheim, M. Gault, Towards a foundation of Web3. FDSE 2022.
Communications in Computer and Information Science (CCIS, vol. 1688)

A. Buldas et al., ``Secure and Efficient Implementation of Electronic Money,”
FDSE 2022. Communications in Computer and Information Science, vol 1688.
Springer, Singapore.

https://doi.org/10.36227/techrxiv.14994558

